[an error occurred while processing this directive] | [an error occurred while processing this directive]
Artificial Intelligence:opportunities and challenges in radiotherapy
Li Yimin1, Lan Mei2, Zhang Jiayu1, Wang Pei2, Lang Jinyi2
1University of Electronic Science and Technology of China,Chengdu 617310,China; 2Affiliated Hospital,Medical College of University of Electronic Science and Technology of China/Sichuan Cancer Hospital·Cancer Institute,Chengdu 610041,China
Abstract Artificial Intelligence are emerging as poweful tools for many field including medicine. It has be applied to radiation therapy in different degree,such as automatic OAR or tumor volume segmentation,automatic radiotherapy planning,prediction of toxicity and prognostic,etc. In this article,the research progress on Artificial Intelligence in the radiotherapy for malignant tumor was reviewed.
Fund:2017 National Key Research & Development Program"Digital Diagnostic Equipment Research & Development"(2017YFC0113100)
Corresponding Authors:
Lang Jiyi,Email:langjy610@163.com
Cite this article:
Li Yimin,Lan Mei,Zhang Jiayu et al. Artificial Intelligence:opportunities and challenges in radiotherapy[J]. Chinese Journal of Radiation Oncology, 2019, 28(6): 476-480.
Li Yimin,Lan Mei,Zhang Jiayu et al. Artificial Intelligence:opportunities and challenges in radiotherapy[J]. Chinese Journal of Radiation Oncology, 2019, 28(6): 476-480.
[1] McMullin B.Computing machinery and mentality[J].Brain Cogn,1997,34(1):28-47.DOI:10.1006/brcg.1997.0905. [2] Hinton G,Osindero S,Teh Y.A fast learning algorithm for deep belief nets[J].Neural Comput,2006,18(7):1527-1554.DOI:10.1162/neco.2006.18.7.1527. [3] 新一代人工智能发展规划[DB][2018-07-05].http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.New generation artificial intelligence development plan[DB][2018-07-05].http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm. [4] Shortliffe EH,Buchanan BG.A model of inexact reasoning in medicine[J].Mathemat Biosci,1975,23(3):351-379.DOI:10.1016/0025-5564(75)90047-4. [5] de Grey A.Artificial intelligence and medical research:time to aim higher?[J].Rejuvenat Res,2016,19(2):105-106.DOI:10.1089/rej.2016.1827. [6] Wang D,Khosla A,Gargeya R,et al. Deep learning for identifying metastatic breast cancer[J].2016.arXiv preprint arXiv:1606.05718. [7] Gulshan V,Peng L,Coram M,et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J].JAMA,2016,316(22):2402-2410.DOI:10.1001/jama.2016.17216. [8] Esteva A,Kuprel B,Novoa RA,et al. Dermatologist-level classification of skin cancer with deep neural networks[J].Nature,2017,542(7639):115-118.DOI:10.1038/nature21056. [9] Long E,Lin H,Liu Z,et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[J].Nat Biomed Engin,2017,1:0024.DOI:10.1038/s41551-016-0024. [10] Sharp G,Fritscher K,Pekar V,et al. Vision 20/20:perspectives on automated image segmentation for radiotherapy[J].Med Phys,2014,41(5):050902.DOI:10.1118/1.4871620. [11] Han X,Hoogeman MS,Levendag PC,et al. Atlas-based auto-segmentation of head and neck CT images. Medical image computing and computer-assisted intervention[J].MICCAI Int Con Med Imag Comput Comput-Assist Intervent,2008,11(Pt 2):434-441.DOI:10.1007/978-3-540-85990-1_52. [12] Fortunati V,Verhaart RF,van der Lijn F,et al. Tissue segmentation of head and neck CT images for treatment planning:a multiatlas approach combined with intensity modeling[J].Med Phys,2013,40(7):071905.DOI:10.1118/1.4810971. [13] LeCun Y,Bengio Y,Hinton G.Deep learning[J].Nature,2015,521(7553):436-444.DOI:10.1038/nature14539. [14] Dolz J,Ken S,Leroy HA,et al. Supervised machine learning method to segment the brainstem on MRI in multicenter brain tumor treatment context,2015[J].Int J Comput Assist Radiol Surg,2016,11(1):43-51.DOI:10.1007/s11548-015-1266-2. [15] Dolz J,Reyns N,Betrouni N,et al. A deep learning classification scheme based on augmented-enhanced features to segment organs at risk on the optic region in brain cancer patients[J].2017.arXiv preprint arXiv:1703.10480. [16] Ibragimov B,Xing L.Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks[J].Med Phys,2016,44(2):547-557.DOI:10.1002/mp.12045. [17] Men K,Dai J,Li Y.Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks[J].Med Phys,2017,44(12):6377-6389.DOI:10.1002/mp.12602. [18] Kawata Y,Arimura H,Ikushima K,et al. Impact of pixel-based machine-learning techniques on automated frameworks for delineation of gross tumor volume regions for stereotactic body radiation therapy[J].Phys Med,2017,42(1):141-149.DOI:10.1016/j.ejmp.2017.08.012. [19] Good D,Lo J,Lee WR,et al. A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers:an example application to prostate cancer planning[J].Int J Radiat Oncol Biol Phys,2013,87(1):176-181.DOI:10.1016/j.ijrobp.2013.03.015. [20] Appenzoller LM,Michalski JM,Thorstad WL,et al. Predicting dose-volume histograms for organs-at-risk in IMRT planning[J].Med Phys,2012,39(12):7446-7461.DOI:10.1118/1.4761864. [21] Tol JP,Delaney AR,Dahele M,et al. Evaluation of a knowledge-based planning solution for head and neck cancer[J].Int J Radiat Oncol,2015,91(3):612-620.DOI:10.1016/j.ijrobp.2014.11.014. [22] Fogliata A,Belosi F,Clivio A,et al. On the pre-clinical validation of a commercial model-based optimisation engine:application to volumetric modulated arc therapy for patients with lung or prostate cancer[J].Radiother Oncol,2014,113(3):385-391.DOI:10.1016/j.radonc.2014.11.009. [23] Fogliata A,Wang PM,Belosi F,et al. Assessment of a model based optimization engine for volumetric modulated arc therapy for patients with advanced hepatocellular cancer[J].Radiat Oncol,2014,9(1):236-248.DOI:10.1186/s13014-014-0236-0. [24] Moore KL,Brame RS,Low DA,et al. Experience-based quality control of clinical intensity-modulated radiotherapy planning[J].Int J Radiat Oncol,2011,81(2):545-551.DOI:10.1016/j.ijrobp.2010.11.030. [25] Shiraishi S,Moore K.Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy[J].Med Phys,2016,43(1):378-387.DOI:10.1118/1.4938583. [26] Valdes G,Simone CB,2nd,Chen J,et al. Clinical decision support of radiotherapy treatment planning:a data-driven machine learning strategy for patient-specific dosimetric decision making[J].Radiother Oncol,2017,125(3):392-397.DOI:10.1016/j.radonc.2017.10.014. [27] Ruan D.Kernel density estimation-based real-time prediction for respiratory motion[J].Phys Med Biol,2010,55(5):1311-1326.DOI:10.1088/0031-9155/55/5/004. [28] Ruan D,Fessler J,Balter J.Mean position tracking of respiratory motion[J].Med Phys,2008,35(2):782-792.DOI:10.1118/1.2825616. [29] Isaksson M,Jalden J,Murphy M.On using an adaptive neural network to predict lung tumor motion during respiration for radiotherapy applications[J].Med Phys,2005,32(12):3801-3809.DOI:10.1118/1.2134958. [30] Ruan D,Keall P.Online prediction of respiratory motion:multidimensional processing with low-dimensional feature learning[J].Phys Med Biol,2010,55(11):3011-3025.DOI:10.1088/0031-9155/55/11/002. [31] Li Q,Chan M.Predictive time-series modeling using artificial neural networks for Linac beam symmetry:an empirical study[J].Ann NY Acad Sci,2017,1387(1):84-94.DOI:10.1111/nyas.13215. [32] Valdes G,Morin O,Valenciaga Y,et al. Use of TrueBeam developer mode for imaging QA[J].J Appl Clin Med Phys,2015,16(4):322-333.DOI:10.1120/jacmp.v16i4.5363. [33] Carlson J,Park J,Park S,et al. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors[J].Phys Med Biol,2016,61(6):2514-2531.DOI:10.1088/0031-9155/61/6/2514. [34] 郎锦义,王培,吴大可,等.2015年中国大陆放疗基本情况调查研究[J].中华放射肿瘤学杂志,2016,25(6):541-545.DOI:10.3760/cma.j.issn.1001-4221.2016.06.001. Lang JY,Wang P,Wu DK,et al. Investigation on the basic situation of radiotherapy in mainland China in 2015[J].Chin J Radit Oncol,2016,25(6):541-545.DOI:10.3760/cma.j.issn.1001-4221.2016.06.001. [35] Aziz N.Cancer survivorship research:state of knowledge,challenges and opportunities[J].Acta Oncol,2007,46(4):417-432.DOI:10.1080/02841860701367878. [36] Vale C,Nightingale A,Spera N,et al. Late complications from chemoradiotherapy for cervical cancer:reflections from cervical cancer survivors 10 years after the national cancer institute alert[J].Clin Oncol (R Coll Radiol),2010,22(7):588-589.DOI:10.1016/j.clon.2010.05.017. [37] Syndikus I,Morgan R,Sydes M,et al. Late gastrointestinal toxicity after dose-escalated conformal radiotherapy for early prostate cancer:results from the UK medical research council RT01 trial (ISRCTN47772397)[J].Int J Radiat Oncol Biol Phys,2010,77(3):773-783.DOI:10.1016/j.ijrobp.2009.05.052. [38] Hopwood P,Haviland J,Sumo G,et al. Comparison of patient-reported breast,arm,and shoulder symptoms and body image after radiotherapy for early breast cancer:5-year follow-up in the randomised standardisation of breast radiotherapy (START) trials[J].Lancet Oncol,2010,11(3):231-240.DOI:10.1016/S1470-2045(09)70382-1. [39] Pang Q,Wei Q,Xu T,et al. Functional promoter variant rs2868371 of HSPB1 is associated with risk of radiation pneumonitis after chemoradiation for non-small cell lung cancer[J].Int J Radiat Oncol Biol Phys,2013,85(5):1332-1339.DOI:10.1016/j.ijrobp.2012.10.011. [40] Guerra JL,Gomez D,Wei Q,et al. Association between single nucleotide polymorphisms of the transforming growth factor beta1 gene and the risk of severe radiation esophagitis in patients with lung cancer[J].Radiother Oncol,2012,105(3):299-304.DOI:10.1016/j.radonc.2012.08.014. [41] Talbot CJ,Tanteles GA,Barnett GC,et al. A replicated association between polymorphisms near TNFalpha and risk for adverse reactions to radiotherapy[J].Br J Cancer,2012,107(4):748-753.DOI:10.1038/bjc.2012.290. [42] Kerns SL,Stone NN,Stock RG,et al. A 2-stage genome-wide association study to identify single nucleotide polymorphisms associated with development of urinary symptoms after radiotherapy for prostate cancer[J].J Urol,2013,190(1):102-108.DOI:10.1016/j.juro.2013.01.096. [43] Kerns SL,Stock R,Stone N,et al. A two-stage genome-wide association study to identify single nucleotide polymorphisms associated with development of erectile dysfunction following radiotherapy for prostate cancer[J].Int J Radiat Oncol Biol Phys,2013,85(1):e21-e28.DOI:10.1016/j.juro.2013.01.096. [44] Fachal L,Gómez-Caamaño A,Barnett G,et al. A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1[J].Nat Genet,2014,46(8):891-894.DOI:10.1038/ng.3020. [45] Kerns S,West C,Andreassen C,et al. Radiogenomics:the search for genetic predictors of radiotherapy response[J].Future Oncol,2014,10(15):2391-406.DOI:10.2217/fon.14.173. [46] Das SK,Zhou S,Zhang J,et al. Predicting lung radiotherapy-induced pneumonitis using a model combining parametric lyman probit with nonparametric decision trees[J].Int J Radiat Oncol Biol Phys,2007,68(4):1212-1221.DOI:10.1016/j.ijrobp.2007.03.064. [47] Zhen X,Chen J,Zhong Z,et al. Deep Convolutional neural networks with transfer learning for rectum toxicity prediction in combined brachytherapy and external beam radiation therapy for cervical cancer[J].Int J Radiat Oncol Biol Phys,2017,99(Suppl 2):S168.DOI:10.1016/j.ijrobp.2017.06.386. [48] Cosma G,Brown D,Archer M,et al. A survey on computational intelligence approaches for predictive modeling in prostate cancer[J].Expert Syst Appl,2017,70(1):1-19.DOI:10.1016/j.eswa.2016.11.006. [49] Dean JA,Wong KH,Welsh LC,et al. Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy[J].Radiother Oncol,2016,120(1):21-27.DOI:10.1016/j.radonc.2016.05.015. [50] Li H,Zhong H,Boimel PJ,et al. Deep convolutional neural networks for imaging based survival analysis of rectal cancer patients[J].Int J Radiat Oncol Biol Phys,2017,99(Suppl 2):S183.DOI:10.1016/j.ijrobp.2017.06.458. [51] Aneja S,Shaham U,Kumar RJ,et al. Deep neural network to predict local failure following stereotactic body radiation therapy:integrating imaging and clinical data to predict outcomes[J].Int J Radiat Oncol Biol Phys,2017,99(Suppl 2):S47.DOI:10.1016/j.ijrobp.2017.06.120. [52] Mobadersany P,Yousefi S,Amgad M,et al. Predicting cancer outcomes from histology and genomics using convolutional networks[J].P Natl Acad Sci USA,2018,115(13):201717139.DOI:10.1073/pnas.1717139115. [53] Jochems A,Deist TM,El Naqa I,et al. Developing and validating a survival prediction model for NSCLC patients through distributed learning across 3 countries[J].Int J Radiat Oncol Biol Phys,2017,99(2):344-352.DOI:10.1016/j.ijrobp.2017.04.021. [54] Chato L,Latifi S.Machine learning and deep learning techniques to predict overall survival of brain tumor patients using MRI images[J].IEEE Int Conf Bioinformat Bioengineer,2018,2018.9-14.DOI:10.1109/BIBE.2017.00-86. [55] Sun D,Wang M,Feng H,et al. Prognosis prediction of human breast cancer by integrating deep neural network and support vector machine:Supervised feature extraction and classification for breast cancer prognosis prediction[J].Int Cong Imag Signal Proc Biomed Engineer Informat,2018,2018.1-5.DOI:10.1109/CISP-BMEI.2017.8301908. [56] Wang H,Xing F,Su H,et al. Novel image markers for non-small cell lung cancer classification and survival prediction[J].BMC Bioinformat,2014,15(1):310-341.DOI:10.1186/1471-2105-15-310. [57] Qi X,Neylon J,Santhanam A.Dosimetric predictors for quality of life after prostate stereotactic body radiation therapy via deep learning network[J].Int J Radiat Oncol Biol Phys,2017,99(Suppl 2):S167.DOI:10.1016/j.ijrobp.2017.06.384. [58] Bychkov D,Linder N,Turkki R,et al. Deep learning based tissue analysis predicts outcome in colorectal cancer[J].Sci Rep,2018,8(1):3395-3405.DOI:10.1038/s41598-018-21758-3. [59] 关于国家重点研发计划“干细胞及转化研究”等5个重点专项 2017年度项目安排公示的通知.2017-06-01[DB][2018-07-05].http://service.most.gov.cn/2015tztg_all/20170601/2186.html.Notice on the announcement of 5 key special 2017 project arrangements for the National key research and development program"stem cell and transformation research".2017-06-01[DB][2018-07-05].http://service.most.gov.cn/2015tztg_all/20170601/2186.html. [60] Silver D,Schrittwieser J,Simonyan K,et al. Mastering the game of Go without human knowledge[J].Nature,2017,550(7676):354-359.DOI:10.1038/nature24270.