[an error occurred while processing this directive] | [an error occurred while processing this directive]
Introduction of image-guided stereotactic radiotherapy systems for small animals
Qing Gan, Wang Jiazhou, Hu Weigang, Zhang Zhen
Medical School of Fudan University, Shanghai 200032,China (Qing G) Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032,China (Zhang Z, Hu WG, Wang JZ)
Abstract The theory and application of small animal radiotherapy models is critical for the research and development of radiobiology and clinical radiotherapy. Considering universality and cost effects, mouse models are widely used to explore the radiobiological mechanisms of cancerous and normal tissues. In recent years, there has been tremendous progress in image-guided stereotactic radiotherapy equipment for small animals, which could simulate the human radiotherapy process. This article introduces stereotactic radiotherapy systems for small animals guided by different imaging modalities, such as cone-beam computed tomography and magnetic resonance imaging, and then reviews small animal fluorescence imaging technology and summarizes the application of different bioluminescence and fluorescence imaging equipment in small animal imaging systems. Finally, we put forward the prospect of optimization direction of radiotherapy equipment for small animals in future.
Qing Gan,Wang Jiazhou,Hu Weigang et al. Introduction of image-guided stereotactic radiotherapy systems for small animals[J]. Chinese Journal of Radiation Oncology, 2018, 27(2): 222-225.
Qing Gan,Wang Jiazhou,Hu Weigang et al. Introduction of image-guided stereotactic radiotherapy systems for small animals[J]. Chinese Journal of Radiation Oncology, 2018, 27(2): 222-225.
[1] Verhaegen F,Granton P,Tryggestad E.Small animal radiotherapy research platforms[J]. Phys Med Biol,2011,56(12):R55-R83.DOI:10.1088/0031-9155/56/12/R01. [2] Armour M,Ford E,Iordachita I,et al. CT guidance is needed to achieve reproducible positioning of the mouse head for repeat precision cranial irradiation[J].Radiat Res,2010,173(1):119-123. DOI:10.1667/RR1845.1. [3] Wong J,Armour E,Kazanzides P,et al. High-resolution, small animal radiation research platform with x-ray tomographic guidance capabilities[J].Int J Radiat Oncol Biol Phys,2008,71(5):1591-1599. DOI:10.1016/j.ijrobp.2008.04.025. [4] Clarkson R,Lindsay PE,Ansell S,et al. Characterization of image quality and image-guidance performance of a preclinical microirradiator[J].Med Phys,2011,38(2):845-856.DOI:10.1118/1.3533947. [5] Zeng J,Harris TJ,Lim M,et al. Immune modulation and stereotactic radiation:improving local and abscopal responses[J].BioMed Res Int,2013,2013:658126. DOI:10.1155/2013/658126. [6] Zhou JY,Tryggestad E,Wen ZB,et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides[J].Nat Med,2011,17(1):130-134. DOI:10.1038/nm.2268. [7] Zhou H,Rodriguez M,van den Haak F,et al. Development of a micro-computed tomography-based image-guided conformal radiotherapy system for small animals[J]. Int J Radiat Oncol Biol Phys,2010,78(1):297-305. DOI:10.1016/j.ijrobp.2009.11.008. [8] Sha H,Udayakumar TS,Johnson PB,et al. An image guided small animal stereotactic radiotherapy system[J].Oncotarget,2016,7(14):18825-18836.DOI:10.18632/oncotarget.7939. [9] Yang YD,Wang KKH,Eslami S,et al. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research[J].Med Phys,2015,42(4):1710-1720.DOI:10.1118/1.4914860. [10] Yang YD,Armour M,Wang KKH,et al. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation[J].Phys Med Biol,2015,60(13):5163-5177.DOI:10.1088/0031-9155/60/13/5163. [11] Shi J, Udayakumar TS, Wang Z, et al. Optical molecular imaging-guided radiation therapy part 1:Integrated x-ray and bioluminescence tomography. Med Phys. 2017 Sep;44(9):4786-4794. doi:10.1002/mp.12415. Epub 2017 Jul 20. [12] Hansen KS,Zwingenberger AL,Théon AP,et al. Treatment of MRI-Diagnosed trigeminal peripheral nerve sheath tumors by stereotactic radiotherapy in dogs[J].J Vet Intern Med,2016,30(4):1112-1120.DOI:10.1111/jvim.13970. [13] Gutierrez S,Descamps B,Vanhove C.MRI-Only based radiotherapy treatment planning for the rat brain on a small animal radiation research platform (SARRP)[J].PLoS One,2015,10(12):e0143821.DOI:10.1371/journal.pone.0143821. [14] Frenzel T,Kaul MG,Ernst TM,et al. Magnetic resonance imaging for precise radiotherapy of small laboratory animals[J].Z Med Phys,2017,27(1):6-12.DOI:10.1016/j.zemedi.2016.05.002. [15] Corroyer-Dulmont A,Falzone N,Kersemans V,et al. MRI-guided radiotherapy of the SK-N-SH neuroblastoma xenograft model using a small animal radiation research platform[J].Br J Radiol,2017,90(1069):20160427.DOI:10.1259/bjr.20160427. [16] Awan MJ,Dorth J,Mani A,et al. Development and Validation of a Small Animal Immobilizer and Positioning System for the Study of Delivery of Intracranial and Extracranial Radiotherapy Using the Gamma Knife System[J].Technol Cancer Res Treat,2017,16(2):203-210.DOI:10.1177/1533034616658394. [17] McCarroll RE,Rubinstein AE,Kingsley CV,et al.3D-printed small-animal immobilizer for use in preclinical radiotherapy[J].J Am Assoc Lab Anim Sci,2015,54(5):545-548. [18] Tillner F,Thute P,Löck S,et al. Precise image-guided irradiation of small animals:a flexible non-profit platform[J].Phys Med Biol,2016,61(8):3084-3108.DOI:10.1088/0031-9155/61/8/3084. [19] Sharma S,Narayanasamy G,Przybyla B,et al. Advanced Small Animal Conformal Radiation Therapy Device[J].Technol Cancer Res Treat,2017,16(1):45-56.DOI:10.1177/1533034615626011. [20] Grassi R,Cavaliere C,Cozzolino S,et al. Small animal imaging facility:new perspectives for the radiologist[J].Radiol Med,2009,114(1):152-167.DOI:10.1007/s11547-008-0352-8. [21] Mollard S,Fanciullino R,Giacometti S,et al. In Vivo bioluminescence tomography for monitoring breast tumor growth and metastatic spreading:comparative study and mathematical modeling[J].Sci Rep,2016,6:36173.DOI:10.1038/srep36173. [22] Schober O,Rahbar K,Riemann B.Multimodality molecular imaging-from target description to clinical studies[J].Eur J Nucl Med Mol Imaging,2009,36(2):302-314.DOI:10.1007/s00259-008-1042-4. [23] Wang G,Hoffman EA,McLennan G,et al. Development of the first bioluminescent CT scanner[J].Radiology,2003,229:566. [24] Söling A,Rainov NG.Bioluminescence imaging in vivo-application to cancer research[J].Expert Opin Biol Ther,2003,3(7):1163-1172.DOI:10.1517/14712598.3.7.1163. [25] Badr CE,Tannous BA.Bioluminescence imaging:progress and applications[J].Trends Biotechnol,2011,29(12):624-633.DOI:10.1016/j.tibtech.2011.06.010. [26] Chehade M,Srivastava AK,Bulte JWM.Co-registration of bioluminescence tomography,computed tomography,and magnetic resonance imaging for Multimodal in Vivo stem cell tracking[J].Tomography,2016,2(2):159-165.DOI:10.18383/j.tom.2016.00160. [27] Ren SH,Hu HH,Li G,et al. Multi-atlas registration and adaptive hexahedral voxel discretization for fast bioluminescence tomography[J].Biomed Opt Express,2016,7(4):1549-1560.DOI:10.1364/BOE.7.001549. [28] Hu YF,Liu J,Leng CC,et al. Lp regularization for bioluminescence tomography based on the split bregman method[J].Mol Imaging Biol,2016,18(6):830-837.DOI:10.1007/s11307-016-0970-9. [29] Marien E,Hillen A,Vanderhoydonc F,et al. Longitudinal microcomputed tomography-derived biomarkers for lung metastasis detection in a syngeneic mouse model:added value to bioluminescence imaging[J].Lab Invest,2017,97(1):24-33.DOI:10.1038/labinvest.2016.114. [30] Zhang B,Wang KKH,Yu JJ,et al. Bioluminescence tomography-guided radiation therapy for preclinical research[J].Int J Radiat Oncol Biol Phys,2016,94(5):1144-1153.DOI:10.1016/j.ijrobp.2015.11.039. [31] Zhu BH,Godavarty A.Near-infrared fluorescence-enhanced optical tomography[J].BioMed Res Int,2016,2016:5040814.DOI:10.1155/2016/5040814. [32] Blum JS,Temenoff JS,Park H,et al. Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs[J].Biomaterials,2004,25(27):5809-5819.DOI:10.1016/j.biomaterials.2004.01.035. [33] Liu X,Wang HK,Yan ZZ.Non-stationary reconstruction for dynamic fluorescence molecular tomography with extended kalman filter[J].Biomed Opt Express,2016,7(11):4527-4542.DOI:10.1364/BOE.7.004527. [34] Yi HJ,Zhang X,Peng JY,et al. Reconstruction for limited-projection fluorescence molecular tomography based on a double-mesh strategy[J].BioMed Res Int,2016,2016:5682851.DOI:10.1155/2016/5682851.