[an error occurred while processing this directive] | [an error occurred while processing this directive]
Current research on molecular mechanism of ionizing radiation-induced neurogenesis disorders
Huang Ping, Zhang Liyuan, Yang Hongying, Tian Ye
Department of Radiotherapy and Oncology,Second Affiliated Hospital,Institute of Radiation Oncology,Soochow University; Suzhou Key Laboratory of Radiation Oncology;Suzhou Medical Center for Radiation Oncology,Suzhou 215004,China (Huang P,Zhang LY,Tian Y); Jiangsu Collaborative Innovation Center of Radiation Medicine; Department of Radiation Medicine and Protection,Soochow University School of Medicine; Suzhou 215123,China (Yang HY)
Abstract With the development of modern radiotherapy techniques, radiotherapy has been widely used in the multimodality therapy for various malignant tumors, including head and neck cancers such as nasopharyngeal cancer and laryngeal cancer. A combination of surgery and radiochemotherapy significantly improves patients’ cure rate and survival time;however, with the increase in survival time, some patients receiving radiotherapy develop marked cognitive impairment. Ionizing radiation-induced cognitive impairment mainly manifests as hippocampus-dependent cognitive impairment, which is associated with inhibited hippocampal neurogenesis due to ionizing radiation. Therefore, it is necessary to investigate the mechanisms of the inhibition of hippocampal neurogenesis by ionizing radiation. This article reviews the molecular mechanism of neurogenesis disorders induced by ionizing radiation.
Fund:Project for Priority Discipline Construction of Jiangsu Institutions of Higher Education (Clinical Medicine);Collaborative Innovation Center of Jiangsu Universities (Radiology);Suzhou Key Laboratory, Project of Suzhou Science and Technology Development Plan (SZS201509);Science and Technology Special Project in Clinical Medicine of Jiangsu Province (BL2014040):General Project of National Natural Science Foundation of China (81372411, 81402517, 81472804)
Huang Ping,Zhang Liyuan,Yang Hongying et al. Current research on molecular mechanism of ionizing radiation-induced neurogenesis disorders[J]. Chinese Journal of Radiation Oncology, 2017, 26(4): 481-484.
Huang Ping,Zhang Liyuan,Yang Hongying et al. Current research on molecular mechanism of ionizing radiation-induced neurogenesis disorders[J]. Chinese Journal of Radiation Oncology, 2017, 26(4): 481-484.
[1] Son Y,Yang M,Wang H,et al. Hippocampal dysfunctions caused by cranial irradiation:a review of the experimental evidence[J].Brain Behav Immun,2015,45:287-296.DOI:10.1016/j.bbi.2015.01.007 [2] Stewart FA,Akleyev AV,Hauer-Jensen M,et al. ICRP publication 118:ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context[J].Ann ICRP,2012,41(1-2).DOI:10.1016/j.icrp.2012.02.001 [3] Gondi V,Paulus R,Bruner DW,et al. Decline in tested and self-reported cognitive functioning after prophylactic cranial irradiation for lung cancer:pooled secondary analysis of radiation therapy oncology group randomized trials 0212 and 0214[J].Int J Radiat Oncol Biol Phys,2013,86(4):656-664.DOI:10.1016/j.ijrobp.2013.02.033 [4] Greene-Schloesser D,Moore E,Robbins ME.Molecular pathways:radiation-induced cognitive impairment[J].Clin Cancer Res,2013,19(9):2294-2300.DOI:10.1158/1078-0432.CCR-11-2903 [5] Kempf SJ,Casciati A,Buratovic S,et al. The cognitive defects of neonatally irradiated mice are accompanied by changed synaptic plasticity,adult neurogenesis and neuroinflammation[J].Mol Neurodegener,2014,9:57.DOI:10.1186/1750-1326-9-57 [6] Greene-Schloesser D,Robbins ME,Peiffer AM,et al. Radiation-induced brain injury:a review[J].Front Oncol,2012,2:73.DOI:10.3389/fonc.2012.00073 [7] Bortolotto V,Cuccurazzu B,Canonico PL,et al. NF-κB mediated regulation of adult hippocampal neurogenesis:relevance to mood disorders and antidepressant activity[J].Biomed Res Int, 2014,2014:612798.DOI:10.1155/2014/612798 [8] Zhang LY,Chen LS,Sun R,et al. Effects of expression level of DNA repair-related genes involved in the NHEJ pathway on radiation-induced cognitive impairment[J].J Radiat Res,2013,54(2):235-242.DOI:10.1093/jrr/rrs095 [9] Eom HS,Park HR,Jo SK,et al. Ionizing radiation induces neuronal differentiation of Neuro-2a cells via PI3-kinase and p53-dependent pathways[J].Int J Radiat Biol,2015,91(7):585-595.DOI:10.3109/09553002.2015.1029595. [10] Uberti D,Piccioni L,Cadei M,et al.p53 is dispensable for apoptosis but controls neurogenesis of mouse dentate gyrus cells following γ-irradiation[J].Mol Brain Res,2001,93(1):81-89.DOI:10.1016/S0169-328X (01)00180-2. [11] Armesilla-Diaz A,Bragado P,Del Valle I,et al.p53 regulates the self-renewal and differentiation of neural precursors[J].Neuroscience,2009,158(4):1378-1389.DOI:10.1016/j.neuroscience.2008.10.052. [12] Son Y,Yang M,Kang S,et al. Cranial irradiation regulates CREB-BDNF signaling and variant BDNF transcript levels in the mouse hippocampus[J].Neurobiol Learn Mem,2015,121:12-19.DOI:10.1016/j.nlm.2015.03.002. [13] Ji S,Tian Y,Lu Y,et al. Irradiation-induced hippocampal neurogenesis impairment is associated with epigenetic regulation of bdnf gene transcription[J].Brain Res,2014,1577:77-88.DOI:10.1016/j.brainres.2014.06.035. [14] Ji JF,Ji SJ,Sun R,et al. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway[J].Biochem Biophys Res Commun,2014,443(2):646-651.DOI:10.1016/j.bbrc.2013.12.031. [15] Rola R,Zou Y,Huang TT,et al. Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis[J].Free Radic Biol Med,2007,42(8):1133-1145.DOI:10.1016/j.freeradbiomed.2007.01.020. [16] Zou YN,Corniola R,Leu D,et al. Extracellular superoxide dismutase is important for hippocampal neurogenesis and preservation of cognitive functions after irradiation[J].Proc Natl Acad Sci U S A,2012,109(52):21522-21527.DOI:10.1073/pnas.1216913110. [17] Fishman K,Baure J,Zou YN,et al. Radiation-induced reductions in neurogenesis are ameliorated in mice deficient in CuZnSOD or MnSOD[J].Free Radic Biol Med,2009,47(10):1459-1467.DOI:10.1016/j.freeradbiomed.2009.08.016. [18] Huang TT,Leu D,Zou YN.Oxidative stress and redox regulation on hippocampal-dependent cognitive functions[J].Arch Biochem Biophys,2015,576:2-7.DOI:10.1016/j.abb.2015.03.014. [19] Belarbi K,Jopson T,Arellano C,et al. CCR2 deficiency prevents neuronal dysfunction and cognitive impairments induced by cranial irradiation[J].Cancer Res,2013,73(3):1201-1210.DOI:10.1158/0008-5472.CAN-12-2989. [20] Acharya MM,Patel NH,Craver BM,et al. Consequences of low dose ionizing radiation exposure on the hippocampal microenvironment[J/OL].PLoS One,2015,10(6):e0128316.DOI:10.1371/journal.pone.0128316. [21] Schneider L,Pellegatta S,Favaro R,et al. DNA damage in mammalian neural stem cells leads to astrocytic differentiation mediated by BMP2 signaling through JAK-STAT[J].Stem Cell Reports,2013,1(2):123-138.DOI:10.1016/j.stemcr.2013.06.004. [22] Yang P,Leu D,Ye KQ,et al. Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist[J].Exp Neurol,2016,279:178-186.DOI:10.1016/j.expneurol.2016.02.021. [23] Quadrato G,Benevento M,Alber S,et al. Nuclear factor of activated T cells (NFATc4) is required for BDNF-dependent survival of adult-born neurons and spatial memory formation in the hippocampus[J].Proc Natl Acad Sci USA,2012,109(23):E1499-E1508.DOI:10.1073/pnas.1202068109. [24] Yoshida T,Goto S,Kawakatsu M,et al. Mitochondrial dysfunction,a probable cause of persistent oxidative stress after exposure to ionizing radiation[J].Free Radic Res,2011,46(2):147-153.DOI:10.3109/10715762.2011.645207. [25] Ji R,Tian SF,Lu HJ,et al. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation[J].J Immunol,2013,191(12):6165-6177.DOI:10.4049/jimmunol.1302229. [26] Ji R,Meng LB,Li QT,et al. TAM receptor deficiency affects adult hippocampal neurogenesis[J].Metab Brain Dis,2015,30(3):633-644.DOI:10.1007/s11011-014-9636-y. [27] Ji R,Meng LB,Jiang X,et al. TAM receptors support neural stem cell survival,proliferation and neuronal differentiation[J/OL].PLoS One,2014,9(12):e115140.DOI:10.1371/journal.pone.0115140. [28] Deng ZY,Sui GC,Rosa PM,et al. Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells[J/OL].PLoS One,2012,7(5):e36739.DOI:10.1371/journal.pone.0036739. [29] Wu JY,Pan ZF,Cheng MY,et al. Ginsenoside Rg1 facilitates neural differentiation of mouse embryonic stem cells via GR-dependent signaling pathway[J].Neurochem Int,2013,62(1):92-102.DOI:10.1016/j.neuint.2012.09.016. [30] Wong-Goodrich SJE,Pfau ML,Flores CT,et al. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation[J].Cancer Res,2010,70(22):9329-9338.DOI:10.1158/0008-5472.CAN-10-1854. [31] Choi E,Choi E,Hwang KC.MicroRNAs as novel regulators of stem cell fate[J].World J Stem Cells,2013,5(4):172-187.DOI:10.4252/WJSC.v5.i4.172. [32] Yang L,Chao J,Kook YH,et al. Involvement of miR-9/MCPIP1 axis in PDGF-BB-mediated neurogenesis in neuronal progenitor cells[J].Cell Death Dis,2013,4:e960.DOI:10.1038/cddis.2013.486.