Department of Radiation Oncology,National Cancer Center/Cancer Hospital,Chinese Academy of Medical Science,Peking Union Medical Collage,Beijing 100021,China
AbstractObjective To evaluate the effects of four types of variance reduction techniques (ring counter grid, high electron cutoff energy, termination of electron tracking in some structures, and emission direction-biased sampling of source) on the efficiency and accuracy of Monte Carlo simulation for the single source channel of the Leksell Gamma Knife. Methods The single source channel of the Leksell Gamma Knife was modeled using Monte Carlo software MCNP. Four types of variance reduction techniques were used to simulate the dose distribution in the water-like phantom. The computation efficiency and simulation result were compared between the four techniques. Results All techniques substantially improved the computation efficiency and had little effect on the accuracy of the simulation (relative error less than 2.5%). However, if the electron cutoff energy was above 50 keV, the simulation became quite inaccurate due to neglect of the scattering of high-energy electrons and their dosimetric contribution to the penumbra. When the scattering of high-energy electrons and their dosimetric contribution to the penumbra were ignored, the dose to the Profile platform was overestimated and the dose to the penumbra was underestimated. Conclusions Rational use of variance reduction techniques can substantially improve the efficiency of Monte Carlo simulation for the single source channel of the Leksell Gamma Knife. However, the impact of variance reduction techniques on the accuracy of the simulation should be carefully evaluated.
Tian Yuan,Xu Yingjie,Ren Xinxin et al. Effects of variance reduction techniques on the efficiency and accuracy of Monte Carlo simulation for the single source channel of Gamma Knife[J]. Chinese Journal of Radiation Oncology, 2016, 25(8): 855-860.
Tian Yuan,Xu Yingjie,Ren Xinxin et al. Effects of variance reduction techniques on the efficiency and accuracy of Monte Carlo simulation for the single source channel of Gamma Knife[J]. Chinese Journal of Radiation Oncology, 2016, 25(8): 855-860.
[1] Meltsner SG,DeWerd LA.Air kerma based dosimetry calibration for the Leksell Gamma Knife[J].Med Phys,2009,36(2):339-350.DOI:10.1118/1.3049587 [2] Mack A,Scheib SG,Major J,et al. Precision dosimetry for narrow photon beams used in radiosurgery-determination of Gamma Knife output factors[J].Med Phys,2002,29(9):2080-2089.DOI:10.1118/1.1501138 [3] Francescon P,Cora S,Cavedon C,et al. Use of a new type of radiochromic film,a new parallel-plate micro-chamber,MOSFETs,and TLD 800 microcubes in the dosimetry of small beams[J].Med Phys,1998,25(4):503-511.DOI:10.1118/1.598227 [4] Tsai JS,Rivard MJ,Engler MJ,et al. Determination of the 4 mm Gamma Knife helmet relative output factor using a variety of detectors[J].Med Phys,2003,30(5):986-992.DOI:10.1118/1.1567736 [5] Ma LJ,Li XA,Yu CX.An efficient method of measuring the 4 mm helmet output factor for the Gamma knife[J].Phys Med Biol,2000,45(3):729-733.DOI:10.1088/0031-9155/45/3/311 [6] Novotny Jr J,Bhatnagar JP,Quader MA,et al. Measurement of relative output factors for the 8 and 4 mm collimators of Leksell Gamma Knife Perfexion by film dosimetry[J].Med Phys,2009,36(5):1768-1774.DOI:10.1118/1.3113904 [7] Cheung JYC,Yu KN,Yu CP,et al. Monte Carlo calculation of single-beam dose profiles used in a gamma knife treatment planning system[J].Med Phys,1998,25(9):1673-1765.DOI:10.1118/1.598347 [8] Cheung JYC,Yu KN,Ho RTK,et al. Monte Carlo calculations and GafChromic film measurements for plugged collimator helmets of Leksell Gamma Knife unit[J].Med Phys,1999,26(7):1252-1256.DOI:10.1118/1.598639 [9] Cheung JYC,Yu KN,Ho RTK,et al. Monte Carlo calculated output factors of a Leksell Gamma Knife unit[J].Phys Med Biol,1999,44(12):N247-N249.DOI:10.1088/0031-9155/44/12/401 [10] Cheung YC,Yu KN,Ho RTK,et al. Stereotactic dose planning system used in Leksell Gamma Knife model-B:EGS4 Monte Carlo versus GafChromic films MD-55[J].Appl Radiat Isot,2000,53(3):427-430.DOI:10.1016/S0969-8043(99)00285-7 [11] Cheung JYC,Yu KN,Yu CP,et al. Dose distributions at extreme irradiation depths of gamma knife radiosurgery:EGS4 Monte Carlo calculations[J].Appl Radiat Isot,2001,54(3):461-465.DOI:10.1016/S0969-8043(00)00283-9 [12] Cheung JYC,Yu KN,Yu CP,et al. Choice of phantom materials for dosimetry of Leksell Gamma Knife unit:a Monte Carlo study[J].Med Phys,2002,29(10):2260-2261.DOI:10.1118/1.1508797 [13] Cheung JYC,Yu KN,Chan JFK,et al. Dose distribution close to metal implants in Gamma Knife Radiosurgery:a Monte Carlo study[J].Med Phys,2003,30(7):1812-1815.DOI:10.1118/1.1582811 [14] Cheung JY,Yu KN.Dose distribution close to metal implants in gamma knife radiosurgery:a Monte Carlo study[J].Med Phys,2005,32(5):1448-1449.DOI:10.1118/1.1901183 [15] Cheung JYC,Ng KP,Yu CP,et al. Comparative study of treatment dose plans after the refinement of Leksell GammaKnife single-beam dose profiles[J].Med Phys,2007,34(9):3556-3561.DOI:10.1118/1.2766760 [16] Cheung JYC,Yu KN.Rotating and static sources for gamma knife radiosurgery systems:monte Carlo studies[J].Med Phys,2006,33(7):2500-2505.DOI:10.1118/1.2207313 [17] Al-Dweri FMO,Lallena AM,Vilches M.A simplified model of the source channel of the Leksell GammaKnife tested with PENELOPE[J].Phys Med Biol,2004,49(12):2687-2703.DOI:10.1088/0031-9155/49/12/015 [18] Al-Dweri FMO,Lallena AM.A simplified model of the source channel of the Leksell GammaKnife :testing multisource configurations with PENELOPE[J].Phys Med Biol,2004,49(15):3441-3453.DOI:10.1088/0031-9155/49/15/009 [19] Al-Dweri FMO,Rojas EL,Lallena AM.Effects of bone-and air-tissue inhomogeneities on the dose distributions of the Leksell Gamma Knifecalculated with PENELOPE[J].Phys Med Biol,2005,50(23):5665-5678.DOI:10.1088/0031-9155/50/23/018 [20] Trnka J,Novotny Jr J,Kluson J.MCNP-based computational model for the Leksell gamma knife[J].Med Phys,2007,34(1):63-75.DOI:10.1118/1.2401054 [21] Turner A,Davis A.Improving computational efficiency of Monte-Carlo simulations with variance reduction[A]//International Conference on Mathematics and Computationa. Methods applied to nuclear science and engineering.(M&C 2013)[M].Sun Valley,Idaho,USA:ANS,2013 [22] 刘艳梅,薛定宇,徐心和,等.放射治疗剂量分布的Monte Carlo模拟[J].清华大学学报(自然科学版),2007,47(S1):920-923.DOI:10.3321/j.issn:1000-0054.2007.z1.006 Liu YM,Xue DY,Xu XH,et al. Monte Carlo simulation of dose distribution of radiotherapy[J].J Tsinghua Univ (Sci Tech ed),2007,47(S1):920-923.DOI:10.3321/j.issn:1000-0054.2007.z1.006 [23] 包尚联,郭景新,黄斐增,等.伽马刀剂量的Monte Carlo计算[J].中国医学物理学杂志,1999,16(3):129-131.DOI:10.3969/j.issn.1005-202X.1999.03.001 Bao SL,Guo JX,Huang FZ,et al. MC calculation of γ-knife dose[J].Chin J Med Phys,1999,16(3):129-131.DOI:10.3969/j.issn.1005-202X.1999.03.001 [24] 杜书华.输运问题的计算机模拟[M].长沙:湖南科学技术出版社,1988 Du SHH.Computer simulation of transport problems[M].Changsha:Hunan Science and Technology Press,1988 [25] 邱有恒,应阳君,王敏,等.光子电子能量沉积的快速MC模拟方法[J].核动力工程,2010,31(增刊2):171-174 Qiu YH,Ying YJ,Wang M,et al. High-efficiency monte carlo simulation method on energy deposition of photon and electron[J].Nucl Power Engineering,2010,31(Suppl 2):171-174 [26] Cheung JYC,Yu KN.Study of scattered photons from the collimator system of Leksell Gamma Knife using the EGS4 Monte Carlo code[J].Med Phys,2006,33(1):41-45.DOI:10.1118/1.2143138 [27] Moskvin V,DesRosiers C,Papiez L,et al. Monte Carlo simulation of the Leksell GammaKnife:I.source modelling and calculations in homogeneous media[J].Phys Med Biol,2002,47(12):1995-2011.DOI:10.1088/0031-9155/47/12/301 [28] Physical Measurement Laboratory,N.I.o. S.a. T,Stopping Power and Range table for electrons