Abstract Chimeric antigen receptor T (CAR-T) cell therapy is one of the most significant advances in cancer treatment in the last few decades, revolutionizing the treatment paradigm for patients with refractory / recurrent diffuse large B-cell lymphoma (R/R DLBCL) and effectively improving the survival rate of these patients. However, due to the high incidence of grade III-IV side effects of CAR-T cell therapy and the fact that some patients did not obtain remission after CAR-T cell therapy or developed rapid disease progression within a short period of time, researchers are attempting to explore combined therapies, such as chemotherapy, radiotherapy and immunotherapy, to reduce the incidence of side effects and prolong the duration of persistent remission in patients. Among these options, radiotherapy in combination with CAR-T cell therapy have been proven to improve clinical prognosis. In this article, the theoretical basis of synergistic treatment of radiotherapy and CAR-T cell therapy in patients with R/R DLBCL, the safety and efficacy of radiotherapy, the sequence of radiotherapy and CAR-T cell therapy, and the dose of the target area of radiotherapy were reviewed, aiming to provide more evidence for the application and optimization of radiotherapy combined with CAR-T cell therapy for R/R DLBCL.
Corresponding Authors:
Sun Weikai, Email: 1396113551@163.com
Cite this article:
Yang Yun,Sun Weikai. Advances in synergistic treatment of radiotherapy and chimeric antigen receptor T cell therapy for refractory / relapsed diffuse large B-cell lymphoma[J]. Chinese Journal of Radiation Oncology, 2023, 32(7): 651-656.
Yang Yun,Sun Weikai. Advances in synergistic treatment of radiotherapy and chimeric antigen receptor T cell therapy for refractory / relapsed diffuse large B-cell lymphoma[J]. Chinese Journal of Radiation Oncology, 2023, 32(7): 651-656.
[1] Pfreundschuh M, Kuhnt E, Trümper L, et al. CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group[J]. Lancet Oncol, 2011,12(11):1013-1022. DOI: 10.1016/S1470-2045(11)70235-2. [2] Crump M, Kuruvilla J, Couban S, et al. Randomized comparison of gemcitabine, dexamethasone,cisplatin versus dexamethasone, cytarabine,cisplatin chemotherapy before autologous stem-cell transplantation for relapsed and refractory aggressive lymphomas: NCIC-CTG LY.12[J]. J Clin Oncol, 2014,32(31):3490-3496. DOI: 10.1200/JCO.2013.53.9593. [3] Van Den Neste E, Schmitz N, Mounier N, et al. Outcome of patients with relapsed diffuse large B-cell lymphoma who fail second-line salvage regimens in the international CORAL study[J]. Bone Marrow Transplant, 2016,51(1):51-57. DOI: 10.1038/bmt.2015.213. [4] Wang S, Wang L, Hu JD, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from a multicenter real-world study in China[J]. Cancer Commun (Lond), 2021,41(3):229-239. DOI: 10.1002/cac2.12126. [5] Ng AK, Yahalom J, Goda JS, et al. Role of radiation therapy in patients with relapsed/refractory diffuse large B-cell lymphoma: guidelines from the international lymphoma radiation oncology group[J]. Int J Radiat Oncol Biol Phys, 2018,100(3):652-669. DOI: 10.1016/j.ijrobp.2017.12.005. [6] Geldres C, Savoldo B, Dotti G. Chimeric antigen receptor-redirected T cells return to the bench[J]. Semin Immunol, 2016,28(1):3-9. DOI: 10.1016/j.smim.2015.12.001. [7] Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial[J]. Lancet Oncol, 2019,20(1):31-42. DOI: 10.1016/S1470-2045(18)30864-7. [8] Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study[J]. Lancet, 2020,396(10254):839-852. DOI: 10.1016/S0140-6736(20)31366-0. [9] Schuster SJ, Tam CS, Borchmann P, et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study[J]. Lancet Oncol, 2021,22(10):1403-1415. DOI: 10.1016/S1470-2045(21)00375-2. [10] Shevtsov M, Sato H, Multhoff G, et al.Novel approaches to improve the efficacy of immuno-radiotherapy[J]. Front Oncol, 2019,9:156. DOI: 10.3389/fonc.2019.00156. [11] Lugade AA, Sorensen EW, Gerber SA, et al. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity[J]. J Immunol, 2008,180(5):3132-3139. DOI: 10.4049/jimmunol.180.5.3132. [12] Matsumura S, Wang B, Kawashima N, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells[J]. J Immunol, 2008,181(5):3099-3107. DOI: 10.4049/jimmunol.181.5.3099. [13] Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer[J]. Nature, 2015,520(7547):373-377. DOI: 10.1038/nature14292. [14] Reits EA, Hodge JW, Herberts CA, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression,induces successful antitumor immunotherapy[J]. J Exp Med, 2006,203(5):1259-1271. DOI: 10.1084/jem.20052494. [15] DeSelm C, Palomba ML, Yahalom J, et al. Low-dose radiation conditioning enables CAR T cells to mitigate antigen escape[J]. Mol Ther, 2018,26(11):2542-2552. DOI: 10.1016/j.ymthe.2018.09.008. [16] Weiss T, Weller M, Guckenberger M, et al. NKG2D-based CAR T cells and radiotherapy exert synergistic efficacy in glioblastoma[J]. Cancer Res, 2018,78(4):1031-1043. DOI: 10.1158/0008-5472.CAN-17-1788. [17] Smith EL, Mailankody S, Staehr M, et al. BCMA-targeted CAR T-cell therapy plus radiotherapy for the treatment of refractory myeloma reveals potential synergy[J]. Cancer Immunol Res, 2019,7(7):1047-1053. DOI: 10.1158/2326-6066.CIR-18-0551. [18] Arscott WT, Miller D, Jones JA, et al.Tandem induction radiation and chimeric antigen receptor T cell therapy in patients with relapsed or refractory non-Hodgkin lymphoma[J]. Int J Radiat Oncol Biol Phys,2018,102(3):S122. DOI: 10.1016/j.ijrobp.2018.06.306. [19] Pinnix CC, Gunther JR, Dabaja BS, et al. Bridging therapy prior to axicabtagene ciloleucel for relapsed/refractory large B-cell lymphoma[J]. Blood Adv, 2020,4(13):2871-2883. DOI: 10.1182/bloodadvances.2020001837. [20] Sim AJ, Jain MD, Figura NB, et al. Radiation therapy as a bridging strategy for CAR T cell therapy with axicabtagene ciloleucel in diffuse large B-cell lymphoma[J]. Int J Radiat Oncol Biol Phys, 2019,105(5):1012-1021. DOI: 10.1016/j.ijrobp.2019.05.065. [21] Dandapani S, Shouse G, Yeh J, et al. Bridging radiation is an effective strategy to control lymphoma in preparation for CAR-T: a city of hope experience[J]. Blood,2020,136(S1):21-22. DOI:10.1182/blood-2020-143442. [22] Saifi O, Breen W, Lester SC, et al.Radiation therapy as bridging treatment to CAR T cell therapy in non-Hodgkin lymphoma[J]. Int J Radiat Oncol Biol Phys, 2021,111(3S): S132. DOI: 10.1016/j.ijrobp.2021.07.299. [23] Nastoupil LJ, Jain MD, Feng L, et al. Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US lymphoma CAR T consortium[J]. J Clin Oncol, 2020,38(27):3119-3128. DOI: 10.1200/JCO.19.02104. [24] Locke FL, Rossi JM, Neelapu SS, et al. Tumor burden, inflammation,product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma[J]. Blood Adv, 2020,4(19):4898-4911. DOI: 10.1182/bloodadvances.2020002394. [25] Dean EA, Mhaskar RS, Lu H, et al. High metabolic tumor volume is associated with decreased efficacy of axicabtagene ciloleucel in large B-cell lymphoma[J]. Blood Adv, 2020,4(14):3268-3276. DOI: 10.1182/bloodadvances. 2020001900. [26] Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study[J]. Blood, 2017,130(16):1800-1808. DOI: 10.1182/blood-2017-03-769620. [27] Zhu J, Yin X, Qin S.Radiotherapy in combination with chimeric antigen receptor T cell therapy is a safe and promising approach in relapsed/refractory diffuse large B cell lymphoma patients with high tumor burden[J]. Int J Radiat Oncol Biol Phys,2019,105(1S): S67. DOI: 10.1016/j.ijrobp.2019.06.516. [28] Qu CJ, Ping NN, Kang LQ, et al. Radiation priming chimeric antigen receptor T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma with high tumor burden[J]. J Immunother, 2020,43(1):32-37. DOI: 10.1097/CJI.0000 000000000284. [29] Lutfi F, Holtzman NG, Kansagra AJ, et al. The impact of bridging therapy prior to CD19-directed chimeric antigen receptor T-cell therapy in patients with large B-cell lymphoma[J]. Br J Haematol, 2021,195(3):405-412. DOI: 10.1111/bjh.17738. [30] Wright CM, LaRiviere MJ, Baron JA, et al. Bridging radiation therapy before commercial chimeric antigen receptor T-cell therapy for relapsed or refractory aggressive B-cell lymphoma[J]. Int J Radiat Oncol Biol Phys, 2020,108(1):178-188. DOI: 10.1016/j.ijrobp.2020. 05.014. [31] Saifi O, Breen WG, Lester SC, et al. Does bridging radiation therapy affect the pattern of failure after CAR T-cell therapy in non-Hodgkin lymphoma?[J]. Radiother Oncol, 2022,166:171-179. DOI: 10.1016/j.radonc.2021.11.031. [32] Yovino S, Kleinberg L, Grossman SA, et al. The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells[J]. Cancer Invest, 2013,31(2):140-144. DOI: 10.3109/07357907.2012.762780. [33] Fang PQ, Gunther JR, Wu SY, et al.Radiation and CAR T-cell therapy in lymphoma: future frontiers and potential opportunities for synergy[J]. Front Oncol, 2021,11:648655. DOI: 10.3389/fonc.2021.648655. [34] Wang K, Prabhu AV, Sasapu A, et al. Salvage radiation treatment for primary refractory diffuse large B-cell lymphoma after chimeric antigen receptor (CAR) T-cell therapy: a case report[J]. Anticancer Res, 2021,41(7):3635-3638. DOI: 10.21873/anticanres.15152. [35] Imber BS, Sadelain M, DeSelm C, et al. Early experience using salvage radiotherapy for relapsed/refractory non-Hodgkin lymphomas after CD19 chimeric antigen receptor (CAR) T cell therapy[J]. Br J Haematol, 2020,190(1):45-51. DOI: 10.1111/bjh.16541. [36] Wright CM, Yegya-Raman N, Baron J, et al. Salvage radiotherapy for relapsed/refractory non-Hodgkin lymphomas following CD19 chimeric antigen receptor T-cell (CART) therapy[J]. Int J Radiat Oncol Biol Phys,2021,111(3S): S132-S133. DOI:10.1016/j.ijrobp.2021.07.300. [37] Cortes-Bullich A, Perez A, Bachmeier C, et al. Outcomes of CD19 chimeric antigen receptor T cell therapy in patients with gastrointestinal tract involvement of large B cell lymphoma[J]. Transplant Cell Ther, 2021,27(9):768.e1-768.e6. DOI: 10.1016/j.jtct.2021.05.018. [38] Mikhaeel G, Sanderson R, Poetter V, et al.Bridging radiotherapy before CAR-T for high grade lymphoma - feasibility & efficacy[J]. Int J Radiat Oncol Biol Phys,2020,108(3S): S166. DOI: 10.1016/j.ijrobp.2020.07.935. [39] Chandra RA, Wilhite TJ, Balboni TA, et al.A systematic evaluation of abscopal responses following radiotherapy in patients with metastatic melanoma treated with ipilimumab[J]. Oncoimmunology, 2015,4(11):e1046028. DOI: 10.1080/2162402X.2015.1046028. [40] Murty S, Haile ST, Beinat C, et al.Intravital imaging reveals synergistic effect of CAR T-cells and radiation therapy in a preclinical immunocompetent glioblastoma model[J]. Oncoimmunology, 2020,9(1):1757360. DOI: 10.1080/2162402X.2020.1757360.