[an error occurred while processing this directive] | [an error occurred while processing this directive]
Automatic segmentation of organs at risk in head and neck carcinoma from radiation therapy using multi-scale fusion and attention based mechanisms
Lin Xiaowei1, Yang Ruijie2, Li Ni3, Qi Qi1
1School of Computer Science and Technology, Hainan University, Haikou 570228, China; 2Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China; 3School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
AbstractObjective To develop a multi-scale fusion and attention mechanism based image automatic segmentation method of organs at risk (OAR) from head and neck carcinoma radiotherapy. Methods We proposed a new OAR segmentation method for medical images of heads and necks based on the U-Net convolution neural network. Spatial and channel squeeze excitation (csSE) attention block were combined with the U-Net, aiming to enhance the feature expression ability. We also proposed a multi-scale block in the U-Net encoding stage to supplement characteristic information. Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD) were used as evaluation criteria for deep learning performance. Results The segmentation of 22 OAR in the head and neck was performed according to the medical image computing computer assisted intervention (MICCAI) StructSeg2019 dataset. The proposed method improved the average segmentation accuracy by 3%-6% compared with existing methods. The average DSC in the segmentation of 22 OAR in the head and neck was 78.90% and the average 95%HD was 6.23 mm. Conclusion Automatic segmentation of OAR from the head and neck CT using multi-scale fusion and attention mechanism achieves high segmentation accuracy, which is promising for enhancing the accuracy and efficiency of radiotherapy in clinical practice.
Fund:National Natural Science Foundation of China (11861030); Hainan Provincial Natural Science Foundation of China (2019RC176, 621RC511); the National Key Research and Development Program (2020YFE0202500); Beijing Municipal Commission of Science and Technology Collaborative Innovation Project (Z221100003522028)
Corresponding Authors:
Qi Qi,Email: qqi@hainanu.edu.cn; Li Ni, Email: lini@hainnu.edu.cn
Cite this article:
Lin Xiaowei,Yang Ruijie,Li Ni et al. Automatic segmentation of organs at risk in head and neck carcinoma from radiation therapy using multi-scale fusion and attention based mechanisms[J]. Chinese Journal of Radiation Oncology, 2023, 32(4): 319-324.
Lin Xiaowei,Yang Ruijie,Li Ni et al. Automatic segmentation of organs at risk in head and neck carcinoma from radiation therapy using multi-scale fusion and attention based mechanisms[J]. Chinese Journal of Radiation Oncology, 2023, 32(4): 319-324.
[1] Chang ET, Adami HO.The enigmatic epidemiology of nasopharyngeal carcinoma[J]. Cancer Epidemiol Biomarkers Prev, 2006,15(10):1765-1777. DOI: 10.1158/1055-9965.EPI-06-0353. [2] 曾雷, 龚晓昌, 敖帆, 等. 基于调强放疗的鼻咽癌分期探讨[J].中华放射肿瘤学杂志,2015,24(3):285-289. DOI: 10.3760/cma.j.issn.1004-4221.2015.03.014. Zeng L, Gong XC, Ao F, et al.Evaluation of staging system for nasopharyngeal carcinoma based on intensity- modulated radiotherapy[J].Chin J Radiat Oncol, 2015,24(3):285-289. DOI: 10.3760/cma.j.issn.1004- 4221.2015.03.014. [3] 林锦, 韩露, 林少俊, 等. 202例老年鼻咽癌放化疗疗效分析[J].中华放射肿瘤学杂志,2013,22(6):461-464. DOI: 10.3760/cma.j.issn.1004-4221.2013.06.011. Lin J, Han L, Lin SJ, et al.Therapeutic effect of radiotherapy and chemotherapy in 202 elderly patients with nasopharyngeal carcinoma[J].Chin J Radiat Oncol,2013,22(6):461-464. DOI: 10.3760/cma.j.issn.1004- 4221.2013.06.011. [4] 肖光莉, 丘熹彬, 王卫华, 等. 鼻咽癌调强放疗长期疗效及预后分析[J].中华放射肿瘤学杂志,2012,21(6):488-491. DOI: 10.3760/cma.j.issn.1004-4221.2012.06.002. Xiao GL, Qiu XB, Wang WH, et al.Long-term outcome and prognostic factors of nasopharyngeal carcinoma treated by intensity modulated radiotherapy[J].Chin J Radiat Oncol,2012,21(6):488-491. DOI: 10.3760/cma.j.issn. 1004-4221.2012.06.002. [5] Han X, Hoogeman MS, Levendag PC, et al.Atlas-based auto-segmentation of head and neck CT images[J]. Med Image Comput Comput Assist Interv, 2008,11(Pt 2):434-441. DOI: 10.1007/978-3-540-85990-1_52. [6] Shin HC, Roth HR, Gao M, et al.Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging, 2016,35(5):1285-1298. DOI: 10.1109/TMI.2016.2528162. [7] Shelhamer E, Long J, Darrell T.Fully convolutional networks for semantic segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017,39(4):640-651. DOI: 10.1109/TPAMI.2016.2572683. [8] Ibragimov B, Xing L.Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks[J]. Med Phys, 2017,44(2):547-557. DOI: 10.1002/mp.12045. [9] Gao YH, Huang R, Chen M, et al. Focusnet: imbalanced large and small organ segmentation with an end-to-end deep neural network for head and neck CT images[C]//MICCAI. International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham: Springer,2019:829-838. DOI: 10.1007/978-3-030-32248-9_92. [10] Zhang S, Wang H, Tian S, et al.A slice classification model-facilitated 3D encoder-decoder network for segmenting organs at risk in head and neck cancer[J]. J Radiat Res, 2021,62(1):94-103. DOI: 10.1093/jrr/rraa094. [11] Çiçek Ö, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]// MICCAI. International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham: Springer,2016:424-432. DOI: 10.1007/978-3-319-46723-8_49. [12] Yu F, Koltun V. Multi-csale context aggregation by dilated convolutions[EB/OL].(2015-11-23)[2021-12-01]. https://arxiv.org/abs/1511.07122. [13] Szegedy C, Liu W, Jia YQ, et al. Going deeper with convolutions[EB/OL]. (2014-09-17)[2021-12-01]. https://arxiv.org/abs/1409.4842. [14] Oktay O, cshlemper J, Folgoc L L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL]. (2018-04-11)[2021-12-01]. https://arxiv.org/abs/1804. 03999. [15] Roy AG, Navab N, Wachinger C. Concurrent spatial and channel 'squeeze & excitation' in fully convolutional networks[EB/OL]. (2018-03-07)[2021-12-01]. https://arxiv.org/abs/1803.02579. [16] Hu J, Shen L, Albanie S, et al.Squeeze-and-excitation networks[J]. IEEE Trans Pattern Anal Mach Intell, 2020,42(8):2011-2023. DOI: 10.1109/TPAMI.2019.2913372. [17] Ronneberger O, Ficsher P, Brox T. U-Net: convolutional networks for biomedical image segmentation[EB/OL]. (2015-05-18)[2021-12-01]. https://arxiv.org/abs/1505. 04597. [18] Kingma DP, Ba J. Adam: a method for stochastic optimization[EB/OL]. (2014-12-22)[2021-12-01]. https://arxiv.org/abs/1412.6980. [19] 慕光睿, 杨燕平, 高耀宗, 等. 基于多尺度三维卷积神经网络的头颈部危及器官分割方法[J].南方医科大学学报,2020,40(4):491-498. DOI: 10.12122/j.issn.1673-4254. 2020.04.07. Mu GR, Yang YP, Gao YZ, et al.Multi-scale 3D convolutional neural network-based segmentation of head and neck organs at risk[J].J South Med Univ,2020,40(4):491-498. DOI: 10.12122/j.issn.1673-4254.2020. 04.07.