[an error occurred while processing this directive] | [an error occurred while processing this directive]
Analysis of risk factors of thrombocytopenia toxicityduring concurrent chemoradiation of gastric cancer
Zhang Li1,2, Zhang Yujing2, Wang Jijin2, Zhang Li2, Cai Xiaojun1, Song Ying1
1Department of Oncology Ⅱ, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China; 2Sun Yat-sen University Cancer Center, Guangzhou 510060, China
AbstractObjective To investigate the related risk factors of thrombocytopenia grade 2+[TPG2(+)] in patients with gastric cancer during chemoradiotherapy. Methods The pre-treatmentclinical data, hematologic parameters, and the correlation between dose distribution of vertebrae andTPG2(+) in non-metastaticgastric adenocarcinoma patients receiving concurrent chemoradiation in Sun Yat-sen University Cancer Center were retrospectively analyzed. Results A total of 58 patients were included, including 23 cases (40%) in theTPG2(+) group and 35(60%) in the TPG2(-) group. There was no statistical difference in baseline clinical data between two groups (all P>0.05). Univariate Logistic regression analysis showed that several baseline parameters including platelet count (PLT),basophil count (BA),lactate dehydrogenase (LDH) and length of CTV (LCTV),the number of vertebrae (VBN), vertebral body volume (VBV), Dmax, Dmean,V5Gy,V10Gy,V20Gy,V30Gy and V40Gywere correlated with TPG2(+)(all P<0.05). However, the multivariate Logistic regressionanalysisshowed that low PLT (P=0.048),high LDH (P=0.028),increased LCTV (P=0.013),high V20Gy/VBN (P=0.030) were associated with the risk of TPG2(+). Conclusion In gastric adenocarcinoma patients treated with chemoradiotherapy,correction of PLT reduction before treatment,avoidinglonger CTV and controlled V20Gy correction for vertebral number may reduce significant thrombocytopenia induced by chemoradiotherapy.
Zhang Li,Zhang Yujing,Wang Jijin et al. Analysis of risk factors of thrombocytopenia toxicityduring concurrent chemoradiation of gastric cancer[J]. Chinese Journal of Radiation Oncology, 2022, 31(2): 160-164.
Zhang Li,Zhang Yujing,Wang Jijin et al. Analysis of risk factors of thrombocytopenia toxicityduring concurrent chemoradiation of gastric cancer[J]. Chinese Journal of Radiation Oncology, 2022, 31(2): 160-164.
[1] Bray F, FerlayJ, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424. DOI:10.3322/caac.21492. [2] Chang JS, Lim JS, Noh SH, et al. Patterns of regional recurrence after curative D2 resection for stage Ⅲ(N3) gastric cancer:implications for postoperative radiotherapy[J]. Radiother Oncol, 2012,104(3):367-373. DOI:10.1016/j.radonc.2012.08.017. [3] Macdonald JS, Smalley SR, Benedetti J, et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction[J]. N Engl J Med, 2001,345(10):725-730. DOI:10.1056/NEJMoa010187. [4] Smalley SR, Benedetti JK, Haller DG, et al. Updated analysis of SWOG-directed intergroup study 0116:a phase Ⅲ trial of adjuvant radiochemotherapy versus observation after curative gastric cancer resection[J]. J Clin Oncol, 2012,30(19):2327-2333. DOI:10.1200/JCO.2011.36.7136. [5] 冯玲玲,张玉晶,张黎,等. 胃癌术前放化疗正常组织放射损伤的剂量效应分析[J]. 中华放射肿瘤学杂志,2018,27(3):271-276. DOI:10.3760/cma.j.issn.1004-4221.2018.03.009. Feng LL, Zhang YJ, Zhang L, et al. A dose-effect analysis of organs at risk during preoperative chemoradiotherapy for gastric cancer[J]. Chin J Radiat Oncol, 2018,27(3):271-276. DOI:10.3760/cma.j.issn.1004-4221.2018.03.009. [6] 冯玲玲,张玉晶,李绮雯,等. 不能切除和复发的局部进展期胃癌放射治疗的疗效分析[J]. 中华放射肿瘤学杂志.2016, 25(11):1209-1213. DOI:10.3760/cma.j.issn.1004-4221.2016.11.014. Feng LL, Zhang YJ,Li Q W, et al. Efficacy of radiotherapy for patients with unresectable or recurrent locally advanced gastric carcinoma[J]. Chin J Radiat Oncol, 2016,25(11):1209-1213. DOI:10.3760/cma.j.issn.1004-4221.2016.11.014. [7] 李晔雄. 肿瘤放射治疗学[M].5版. 北京:中国协和医科大学出版社,2018:1166-1171. Li YX. Radiotherapy Oncology[M].5th ed. Beijing:Peking Union Medical College Press, 2018:1166-1171. [8] Eric JH,Amato G. Radiobiology for the Radiologist[M].5th ed. Philadelphia:Lippincott Williams& Wilkins,2002:512. [9] Mitchell MJ, Logan PM. Radiation-induced changes in bone[J]. Radiographics, 1998,18(5):1125-1136;quiz 1242-1243. DOI:10.1148/radiographics.18.5.9747611. [10] 王健仰,金晶. 限定骨髓剂量的调强放疗对减轻同期放化疗急性血液学毒性的研究进展[J]. 中华放射肿瘤学杂志,2013,22(4):329-332.DOI:10.3760/cma. J.issn.1004-4221.2013.04.020. Wang J Y, Jin J. Research progress of limited bone marrow dose intensity modulated radiotherapy in reducing acute hematological toxicity of concurrent radiotherapy and chemotherapy[J]. Chin J Radiat Oncol,2013,22(4):329-332.DOI:10.3760/cma. J.issn.1004-4221.2013.04.020. [11] Rose BS, Liang Y, Lau SK, et al. Correlation between radiation dose to F-FDG-PET defined active bone marrow subregions and acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy[J]. Int J Radiat Oncol Biol Phys, 2012,83(4):1185-1191. DOI:10.1016/j.ijrobp.2011.09.048. [12] Hayman JA, Callahan JW, Herschtal A, et al. Distribution of proliferating bone marrow in adult cancer patients determined using FLT-PET imaging[J]. Int J Radiat Oncol Biol Phys, 2011,79(3):847-852. DOI:10.1016/j.ijrobp.2009.11.040. [13] Rose BS, Aydogan B, Liang Y, et al. Normal tissue complication probability modeling of acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy[J]. Int J Radiat Oncol Biol Phys, 2011,79(3):800-807. DOI:10.1016/j.ijrobp.2009.11.010. [14] Klopp AH, Moughan J, Portelance L, et al. Hematologic toxicity in RTOG 0418:a phase 2 study of postoperative IMRT for Gynecologic cancer[J]. Int J Radiat Oncol Biol Phys, 2013,86(1):83-90. DOI:10.1016/j.ijrobp.2013.01.017. [15] Mell LK, Tiryaki H, Ahn KH, et al. Dosimetric comparison of bone marrow-sparing intensity-modulated radiotherapy versus conventional techniques for treatment of cervical cancer[J]. Int J Radiat Oncol Biol Phys, 2008,71(5):1504-1510. DOI:10.1016/j.ijrobp.2008.04.046. [16] Zhang A, Deek MP, Kim S, et al. Vertebral body irradiation during chemoradiation therapy for esophageal cancer contributes to acute bone marrow toxicity[J]. J Gastrointest Oncol, 2019,10(3):513-522. DOI:10.21037/jgo.2019.01.20. [17] Deek MP, Benenati B, Kim S, et al. Thoracic vertebral body irradiation contributes to acute hematologic toxicity during chemoradiation therapy for non-small cell lung cancer[J]. Int J Radiat Oncol Biol Phys, 2016,94(1):147-154. DOI:10.1016/j.ijrobp.2015.09.022. [18] Wang J, Tian Y, Tang Y, et al. A phase Ⅱ prospective nonrandomized trial of magnetic resonance imaging-guided hematopoietic bone marrow-sparing radiotherapy for gastric cancer patients with concurrent chemotherapy[J]. Oncol Targets Ther, 2016,9:2701-2707. DOI:10.2147/OTT. S91586. [19] Fabian D, Ayan A, Dicostanzo D, et al. Increasing radiation dose to the thoracic marrow is associated with acute hematologic toxicities in patients receiving chemoradiation for esophageal cancer[J]. Front Oncol, 2019,9:147. DOI:10.3389/fonc.2019.00147. [20] Mell LK, Kochanski JD, Roeske JC, et al. Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2006,66(5):1356-1365. DOI:10.1016/j.ijrobp.2006.03.018.