1Medical College of Qinghai University, Xining 810001, China; 2Department of Radiation Oncology, Affiliated Hospital of Qinghai University/Affiliated Cancer Hospital Qinghai University, Xining 810001, China
AbstractObjective To search for the key genes influencing the resistance of rectal cancer to chemoradiotherapy based on the weighted gene co-expression network analysis (WGCNA). Methods The data were collected from gene expression omnibus. The whole genome expression data GSE119409 of patients receiving radiotherapy and chemotherapy were obtained by gene expression ominibus. The weighted gene co-expression networks of pathological complete response group and non-pathological complete response group were constructed respectively. NetRep conservative evaluation method was used to comprehensively analyze the three key network attributes of gene connectivity, gene significance and module membership of each node in the network module, and to determine the key genes closely related to the sensitivity of rectal cancer to radiotherapy and chemotherapy. Results Network modules including black, blue, green, yellow and purple were obtained by WGCNA, and five key genes including SLC22A14, SIDT2, CABP4, EPHB6 and RAB11B were screened out. Conclusions Five gene co-expression network modules and five key genes related to chemoradiotherapy resistance of rectal cancer were screened by weighted gene co-expression network analysis, which provided clues for finding molecular markers and potential therapeutic targets for neoadjuvant chemoradiotherapy resistance evaluation.
Hao Yanhui,Feng Ruixing,Qi Yanjuan et al. Genomic prediction of neoadjuvant chemoradiotherapy resistance in rectal cancer[J]. Chinese Journal of Radiation Oncology, 2021, 30(12): 1268-1274.
Hao Yanhui,Feng Ruixing,Qi Yanjuan et al. Genomic prediction of neoadjuvant chemoradiotherapy resistance in rectal cancer[J]. Chinese Journal of Radiation Oncology, 2021, 30(12): 1268-1274.
[1] 中华人民共和国国家卫生健康委员会. 中国结直肠癌诊疗规范(2020年版)[J]. 中华外科杂志,2020, 58(8):561-585. DOI:10.3760/cma.j.cn112139-20200518-00390. National Health Commission of the People's Republic of China. Chinese protocol of diagnosis and treatment of colorectal cancer (2020 ed)[J]. Chin J Surg,2020, 58(8):561-585. DOI:10.3760/cma.j.cn112139-20200518-00390. [2] Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis[J]. Stat Appl Genet Mol Biol, 2005, 4(1):Article17. DOI:10.2202/1544-6115.1128. [3] Niemira M, Collin F, Szalkowska A, et al. Molecular signature of subtypes of non-small-cell lung cancer by large-scale transcriptional profiling:identification of key modules and genes by weighted gene co-expression network analysis (WGCNA)[J]. Cancers, 2019, 12(1):37. DOI:10.3390/cancers12010037. [4] de Jong S, Boks MP, Fuller TF, et al. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes[J/OL]. PLoS ONE, 2012, 7(6):e39498. DOI:10.1371/journal.pone.0039498. [5] Tian Z, He W, Tang J, et al. Identification of Important Modules and Biomarkers in Breast Cancer Based on WGCNA[J]. Onco Targets Ther, 2020, 13:6805-6817. DOI:10.2147/OTT. S258439. [6] Gautier L, Cope L, Bolstad BM, et al. Affy-analysis of Affymetrix GeneChip data at the probe level[J]. Bioinformatics, 2004, 20(3):307-315. DOI:10.1093/bioinformatics/btg405. [7] Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor:open software development for computational biology and bioinformatics[J]. Genome Biol, 2004, 5(10):R80. DOI:10.1186/gb-2004-5-10-r80. [8] Tejera E, Bernardes J, Rebelo I. Co-expression network analysis and genetic algorithms for gene prioritization in preeclampsia[J]. BMC Med Genomics, 2013, 6(1):51. DOI:10.1186/1755-8794-6-51. [9] Tan N, Chung MK, Smith JD, et al. Weighted gene coexpression network analysis of human left atrial tissue identifies gene modules associated with atrial fibrillation[J]. Circ Cardiovasc Genet, 2013, 6(4):362-371. DOI:10.1161/CIRCGENETICS.113.000133. [10] Ritchie SC, Watts S, Fearnley LG, et al. A Scalable permutation approach reveals replication and preservation patterns of network modules in large datasets[J]. Cell Syst, 2016, 3(1):71-82. DOI:10.1016/j.cels.2016.06.012. [11] Toosi BM, El Zawily A, Truitt L, et al. EPHB6 augments both development and drug sensitivity of triple-negative breast cancer tumours[J]. Oncogene, 2018, 37(30):4073-4093. DOI:10.1038/s41388-018-0228-x. [12] Xu D, Yuan L, Liu X, et al. EphB6 overexpression and Apc mutation together promote colorectal cancer[J]. Oncotarget, 2016, 7(21):31111-31121. DOI:10.18632/oncotarget.9080. [13] El Zawily A, McEwen E, Toosi B, et al. The EphB6 receptor is overexpressed in pediatric T cell acute lymphoblastic leukemia and increases its sensitivity to doxorubicin treatment[J]. Sci Rep, 2017, 7(1):14767. DOI:10.1038/s41598-017-15200-3. [14] Yoon S, Choi JH, Kim SJ, et al. EPHB6 mutation induces cell adhesion-mediated paclitaxel resistance via EPHA2 and CDH11 expression[J]. Exp Mol Med, 2019, 51(6):1-12. DOI:10.1038/s12276-019-0261-z. [15] Howe EN, Burnette MD, Justice ME, et al. Rab11b-mediated integrin recycling promotes brain metastatic adaptation and outgrowth[J]. Nat Commun, 2020, 11(1):3017. DOI:10.1038/s41467-020-16832-2. [16] Nguyen TA, Bieging-Rolett KT, Putoczki TL, et al. SIDT2 RNA transporter promotes lung and gastrointestinal tumor development[J]. iScience, 2019, 20:14-24. DOI:10.1016/j.isci.2019.09.009. [17] Sun H, Ding JM, Zheng HH, et al. The effects of SiDT2 on the inflammatory pathway in mouse mesangial cells[J]. Mediators Inflamm, 2020, 2020:3560793. DOI:10.1155/2020/3560793. [18] Nigam SK. The SLC22 transporter family:a paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease[J]. Annu Rev Pharmacol Toxicol, 2018, 58(1):663-687. DOI:10.1146/annurev-pharmtox-010617-052713. [19] Gupta S, Burckhardt G, Hagos Y. SLC22 transporter family proteins as targets for cytostatic uptake into tumor cells[J]. Biol Chem, 2011, 392(1-2):117-124. DOI:10.1515/BC.2011.014. [20] Hao J, Bao XX, Jin B, et al. Ca2+ channel subunit α 1d promotes proliferation and migration of endometrial cancer cells mediated by 17β-estradiol via the G protein-coupled estrogen receptor[J]. FASEB J, 2015, 29(7):2883-2893. DOI:10.1096/fj.14-265603. [21] 宁显会,刘娟,胡俐,等. NOX4通过激活PI3K/AKT通路对鼻咽癌细胞放疗敏感性的影响[J]. 中华耳鼻咽喉头颈外科杂志,2020, 55(5):514-519. DOI:10.3760/cma.j.cn115330-20190918-00584. Ning XH, Liu J, Hu L, et al. Effects of NOX4 on radiosensitivity of nasopharyngeal carcinoma cells by activating the PI3K/AKT pathway[J]. Chin J Otorhinolaryngol Head Neck Surg, 2020, 55(5):514-519. DOI:10.3760/cma.j.cn115330-20190918-00584. [22] 钟伟杰,李庆山,李康保,等. 人骨髓来源间充质干细胞在肿瘤微环境中上调IL-17A水平激活PI3K/Akt通路促进弥漫大B细胞淋巴瘤生长和化疗耐药[J]. 中国肿瘤,2020, 29(5):379-390. DOI:10.11735/j.issn.1004-0242.2020.05. A010. Zhong WJ, Li QS, Li KB, et al. Human bone marrow-derived mesenchymal stem cells promote growth and drug-resistance of diffuse large B-cell lymphoma in tumor microenvironment by up-regulating IL17A expression via activating PI3K/Akt pathway[J]. Chin Cancer, 2020, 29(5):379-390. DOI:10.11735/j.issn.1004-0242.2020.05. A010. [23] 钱晶,蒋学通,徐传奇,等. CAMP/PKA通路在结直肠癌肝转移中的作用及机制研究[J]. 中华结直肠疾病电子杂志,2016, 5(3):244-248. DOI:10.3877/cma.j.issn.2095-3224.2016.03.010. Qian J, Jiang XT, Xu CQ, et al. The effect and mechanism of CAMP/PKA pathway in colorectal liver metastases[J]. Chin J Colorect Dis (Elec Ed), 2016, 5(3):244-248. DOI:10.3877/cma.j.issn.2095-3224.2016.03.010. [24] Cho EA, Kim EJ, Kwak SJ, et al. cAMP signaling inhibits radiation-induced ATM phosphorylation leading to the augmentation of apoptosis in human lung cancer cells[J]. Mol Cancer, 2014, 13(1):36. DOI:10.1186/1476-4598-13-36. [25] Noh SE, Juhnn YS. Cell-type-specific modulation of non-homologous end joining of gamma ray-induced DNA double-strand breaks by cAMP signaling in human cancer cells[J]. J Korean Med Sci, 2020, 35(48):e371. DOI:10.3346/jkms.2020.35.e371