[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress on biological mechanism of tumor hyperthermia
Shen Pei1,2, Zhou Xuexiao1,2, Shi Fan1,2, Wang Shengzhi2
1School of Stomatology of Qingdao University, Qingdao 266003, China; 2Department of Oral and Maxillofacial Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
Abstract In recent years, tumor hyperthermia has become a hot research topic as an adjuvant therapy to traditional tumor therapy. Hyperthermia can directly induce tumor cell necrosis or apoptosis, or inhibit tumor progression by destroying tumor blood vessels. Meantime, it can also activate the response of immune cells and cytokines in the immune system of the host, thereby regulating the immune state of tumor microenvironment. Multiple combined effects influence the tumor progression. A thorough understanding of the biological mechanism of hyperthermia is beneficial to the development of novel therapeutic methods. In this paper, the biological mechanism of hyperthermia in killing tumors was mainly reviewed.
Corresponding Authors:
Wang Shengzhi, Email:Wangsz916@163.com
Cite this article:
Shen Pei,Zhou Xuexiao,Shi Fan et al. Research progress on biological mechanism of tumor hyperthermia[J]. Chinese Journal of Radiation Oncology, 2021, 30(12): 1340-1344.
Shen Pei,Zhou Xuexiao,Shi Fan et al. Research progress on biological mechanism of tumor hyperthermia[J]. Chinese Journal of Radiation Oncology, 2021, 30(12): 1340-1344.
[1] D'Arcy MS. Cell death:a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6):582-592. DOI:10.1002/cbin.11137. [2] Yonezawa M, Otsuka T, Matsui N, et al. Hyperthermia induces apoptosis in malignant fibrous histiocytoma cells in vitro[J]. Int J Cancer, 1996, 66(3):347-351. DOI:10.1002/(SICI)1097-0215(19960503)66:3<347::AID-IJC14>3.0. CO;2-8. [3] Harmon BV, Corder AM, Collins RJ, et al. Cell death induced in a murine mastocytoma by 42-47degrees C heating in vitro:evidence that the form of death changes from apoptosis to necrosis above a critical heat load[J]. Int J Radiat Biol, 1990, 58(5):845-858. DOI:10.1080/09553009014552221. [4] Kassis S, Grondin M, Averill-Bates DA. Heat shock increases levels of reactive oxygen species, autophagy and apoptosis[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(3):118924. DOI:10.1016/j.bbamcr.2020.118924. [5] Mantso T, Vasileiadis S, Anestopoulos I, et al. Hyperthermia induces therapeutic effectiveness and potentiates adjuvant therapy with non-targeted and targeted drugs in an in vitro model of human malignant melanoma[J]. Sci Rep, 2018, 8(1):10724. DOI:10.1038/s41598-018-29018-0. [6] Üçeyler N, Urlaub D, Mayer C, et al. Tumor necrosis factor-alpha links heat and inflammation with Fabry pain[J]. Mol Genet Metab, 2019, 127(3):200-206. DOI:10.1016/j.ymgme.2019.05.009. [7] Tamai R, Kiyoura Y. Heat-killed Candida albicans augments synthetic bacterial component-induced proinflammatory cytokine production[J]. Folia Microbiol (Praha), 2019, 64(4):555-566. DOI:10.1007/s12223-019-00679-2. [8] Milleron RS, Bratton SB. ‘Heated’ debates in apoptosis[J]. Cell Mol Life Sci, 2007, 64(18):2329-2333. DOI:10.1007/s00018-007-7135-6. [9] Hou CH, Lin FL, Hou SM, et al. Hyperthermia induces apoptosis through endoplasmic reticulum and reactive oxygen species in human osteosarcoma cells[J]. Int J Mol Sci, 2014, 15(10):17380-17395. DOI:10.3390/ijms151017380. [10] Shore GC, Papa FR, Oakes SA. Signaling cell death from the endoplasmic reticulum stress response[J]. Curr Opin Cell Biol, 2011, 23(2):143-149. DOI:10.1016/j.ceb.2010.11.003. [11] Shellman YG, Howe WR, Miller LA, et al. Hyperthermia Induces Endoplasmic Reticulum-Mediated Apoptosis in Melanoma and Non-Melanoma Skin Cancer Cells[J]. J Invest Dermatol, 2008, 128(4):949-956. DOI:10.1038/sj.jid.5701114. [12] He L, He T, Farrar S, et al. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species[J]. Cell Physiol Biochem, 2017, 44(2):532-553. DOI:10.1159/000485089. [13] Hsu YL, Yu HS, Lin HC, et al. Heat shock induces apoptosis through reactive oxygen species involving mitochondrial and death receptor pathways in corneal cells[J]. Exp Eye Res, 2011, 93(4):405-412. DOI:10.1016/j.exer.2011.06.005. [14] Gu ZT, Wang H, Li L, et al. Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilical vein endothelial cell[J]. Sci Rep-Uk, 2014, 4:4469. DOI:10.1038/srep04469. [15] Basu S, Binder RJ, Suto R, et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-Kappa B pathway[J]. Int Immunol, 2000, 12(11):1539-1546. DOI:10.1093/intimm/12.11.1539. [16] Ito A, Tanaka K, Kondo K, et al. Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma[J]. Cancer Sci, 2003, 94(3):308-313. DOI:10.1111/j.1349-7006.2003.tb01438.x. [17] Pedersen AK, De Melo J, Mørup N, et al. Tumor microenvironment conditions alter Akt and Na+/H+ exchanger NHE1 expression in endothelial cells more than hypoxia alone:implications for endothelial cell function in cancer[J]. BMC Cancer, 2017, 17(1):542. DOI:10.1186/s12885-017-3532-x. [18] Datta NR, Kok HP, Crezee H, et al. Integrating Loco-regional hyperthermia into the current oncology practice:SWOT and TOWS analyses[J]. Front Oncol, 2020, 10:819. DOI:10.3389/fonc.2020.00819. [19] Dunne M, Regenold M, Allen C. Hyperthermia can alter tumor physiology and improve chemo-and radio-therapy efficacy[J]. Adv Drug Deliv Rev, 2020, 163-164:98-124. DOI:10.1016/j.addr.2020.07.007. [20] Huang L, Li Y, Du Y, et al. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy[J]. Nat Commun, 2019, 10(1):4871. DOI:10.1038/s41467-019-12771-9. [21] Liu X, Zheng J, Sun W, et al. Ferrimagnetic vortex nanoring-mediated mild magnetic hyperthermia imparts potent immunological effect for treating cancer metastasis[J]. ACS Nano, 2019, 13(8):8811-8825. DOI:10.1021/acsnano.9b01979. [22] Luo L, Yang J, Zhu C, et al. Sustained release of anti-PD-1 peptide for perdurable immunotherapy together with photothermal ablation against primary and distant tumors[J]. J Control Release, 2018, 278:87-99. DOI:10.1016/j.jconrel.2018.04.002. [23] Xue T, Liu P, Zhou Y, et al. Interleukin-6 induced"acute" phenotypic microenvironment promotes th1 anti-tumor immunity in cryo-thermal therapy revealed by shotgun and parallel reaction monitoring proteomics[J]. Theranostics, 2016, 6(6):773-794. DOI:10.7150/thno.14394. [24] Chauhan A, Midha S, Kumar R, et al. Rapid tumor inhibition via magnetic hyperthermia regulated by caspase 3 with time-dependent clearance of iron oxide nanoparticles[J]. Biomater Sci, 2021, 9(8):2972-2990. DOI:10.1039/d0bm01705a. [25] Tomiyama C, Watanabe M, Honma T, et al. The effect of repetitive mild hyperthermia on body temperature, the autonomic nervous system, and innate and adaptive immunity[J]. Biomed Res, 2015, 36(2):135-142. DOI:10.2220/biomedres.36.135. [26] Chen W, Wang J, An H, et al. Heat shock up-regulates TLR9 expression in human B cells through activation of ERK and NF-KappaB signal pathways[J]. Immunol Lett, 2005, 98(1):153-159. DOI:10.1016/j.imlet.2004.11.006. [27] Zhu J, Zhang Y, Zhang A, et al. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation[J]. Sci Rep, 2016, 6:27136. DOI:10.1038/srep27136. [28] Menga M, Trotta R, Scrima R, et al. Febrile temperature reprograms by redox-mediated signaling the mitochondrial metabolic phenotype in monocyte-derived dendritic cells[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(3):685-699. DOI:10.1016/j.bbadis.2017.12.010. [29] Schildkopf P, Frey B, Ott OJ, et al. Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages[J]. Radiother Oncol, 2011, 101(1):109-115. DOI:10.1016/j.radonc.2011.05.056. [30] Ensor JE, Wiener SM, McCrea KA, et al. Differential effects of hyperthermia on macrophage interleukin-6 and tumor necrosis factor-alpha expression[J]. Am J Physiol, 1994, 266(4 Pt 1):C967-974. DOI:10.1152/ajpcell.1994.266.4. C967. [31] Pathria P, Louis TL, Varner JA. Targeting Tumor-Associated Macrophages in Cancer[J]. Trends Immunol, 2019, 40(4):310-327. DOI:10.1016/j.it.2019.02.003. [32] Zhou J, Tang Z, Gao S, et al. Tumor-Associated Macrophages:Recent Insights and Therapies[J]. Front Oncol, 2020, 10:188. DOI:10.3389/fonc.2020.00188. [33] Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9):6425-6440. DOI:10.1002/jcp.26429. [34] van Bruggen I, Robertson TA, Papadimitriou JM. The effect of mild hyperthermia on the morphology and function of murine resident peritoneal macrophages[J]. Exp Mol Pathol, 1991, 55(2):119-134. DOI:10.1016/0014-4800(91)90047-2. [35] He K, Jia S, Lou Y, et al. Cryo-thermal therapy induces macrophage polarization for durable anti-tumor immunity[J]. Cell Death Dis, 2019, 10(3):216. DOI:10.1038/s41419-019-1459-7. [36] Liu P, Jia S, Lou Y, et al. Cryo-thermal therapy inducing MI macrophage polarization created CXCL10 and IL-6-rich pro-inflammatory environment for CD4(+) T cell-mediated anti-tumor immunity[J]. Int J Hyperthermia, 2019, 36(1):408-420. DOI:10.1080/02656736.2019.1579373. [37] Zhang YH, He M, Wang Y, et al. Modulators of the balance between m1 and M2 macrophages during pregnancy[J]. Front Immunol, 2017, 8:120. DOI:10.3389/fimmu.2017.00120. [38] Frey B, Weiss EM, Rubner Y, et al. Old and new facts about hyperthermia-induced modulations of the immune system[J]. Int J Hyperthermia, 2012, 28(6):528-542. DOI:10.3109/02656736.2012.677933. [39] Zänker KS, Lange J. Whole body hyperthermia and natural killer cell activity[J]. Lancet, 1982, 1(8280):1079-1080. DOI:10.1016/s0140-6736(82)92142-0. [40] Cao G, Wang J, Zheng X, et al. Tumor therapeutics work as stress inducers to enhance tumor sensitivity to natural killer (NK) cell cytolysis by up-regulating NKp30 ligand B7-H6[J]. J Biol Chem, 2015, 290(50):29964-29973. DOI:10.1074/jbc. M115.674010.