AbstractObjective Based on the AAPM-TG218 report, the dose verification of intensity-modulated radiotherapy (IMRT) plans were classified to understand the current status, establish the process and determine the limits of dose verification in our hospital. Methods Different combinations of tumor locations, accelerators, treatment planning systems and verification devices in our hospital were verified and compared to determine the tolerance limits and action limits of each combination. The measurement requirement was adopted according to the AAPM-TG218 report,and 80 cases were selected for each measurement. The measurement procedures were implemented based upon the AAPM-TG218 report and clinical experience of our hospital. Results The clinical action limits of IMRT plans in our hospital could meet the recommended range of the AAPM-TG218 report,and the tolerance limits were slightly lower than the AAPM-TG218 report′s recommendation (93.94% for 3%/2mm). The measurement of verification devices was related to the sensitivity. The tolerance limits measured by EPID were higher than ArcCHECK, especially when the dose/distance requirements were more stringent (94.12% and 92.03% for 3%/2mm, P=0.074;86.82% and 74.61% for 2%/2mm,P=0.017). Conclusion Through the AAPM-TG218 report, the work flow of IMRT dose verification and the limit range are established in our hospital, providing guidance for subsequent clinical dosimetric measurement.
Fund:Science and Technology Project of Henan Province (162102310321)
Corresponding Authors:
Lei Hongchang, Email:leihongchang@live.com
Cite this article:
Guo Wei,Mao Ronghu,Li Bing et al. Preliminary study of tolerance limits and action limits of IMRT plan dose verification based on AAPM-TG218 report[J]. Chinese Journal of Radiation Oncology, 2021, 30(8): 817-821.
Guo Wei,Mao Ronghu,Li Bing et al. Preliminary study of tolerance limits and action limits of IMRT plan dose verification based on AAPM-TG218 report[J]. Chinese Journal of Radiation Oncology, 2021, 30(8): 817-821.
[1] Stambaugh C, Ezzell G. A clinically relevant IMRT QA workflow:design and validation[J]. Med Phys, 2018, 45(4):1391-1399. DOI:10.1002/mp.12838. [2] Siochi RAC, Molineu A, Orton CG. Point/Counterpoint. Patient-specific QA for IMRT should be performed using software rather than hardware methods[J]. Med Phys, 2013, 40(7):070601. DOI:10.1118/1.4794929. [3] Kruse JJ, Mayo CS. Comment on"Catching errors with patient-specific pretreatment machine log file analysis"[J]. Pract Radiat Oncol, 2013, 3(2):91-92. DOI:10.1016/j.prro.2012.05.007. [4] Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA:recommendations of AAPM Task Group No. 218[J]. Med Phys, 2018, 45(4):e53-e83. DOI:10.1002/mp.12810. [5] Sanghangthum T, Suriyapee S, Kim GY, et al. A method of setting limits for the purpose of quality assurance[J]. Phys Med Biol, 2013, 58(19):7025-7037. DOI:10.1088/0031-9155/58/19/7025. [6] Kubo K, Monzen H, Shimomura K, et al. Comparison of patient-specific intensity modulated radiation therapy quality assurance for the prostate across multiple institutions[J]. Rep Pract Oncol Radiother, 2019, 24(6):600-605. DOI:10.1016/j.rpor.2019.09.009. [7] 王勇,李俊萍,张玲玲,等. 不同病种IMRT计划验证通过率差异分析[J]. 中华放射肿瘤学杂志,2017, 26(1):50-52. DOI:10.3760/cma.j.issn.1004-4221.2017.01.011. Wang Y,Li JP,Zhang LL,et al. The differences among the pass rate of intensity modulated radiation therapy planning in different tumors[J]. Chin J Radiat Oncol, 2017,26(1):50-52. DOI:10.3760/cma.j.issn.1004-4221.2017.01.011. [8] 李成强,李光俊,冀传仙,等. ArcCHECK半导体探头特性及在容积调强弧形治疗剂量验证应用研究[J]. 中华放射肿瘤学杂志,2013, 22(3):253-257. DOI:10.3760/cma.j.issn.1004-4221.2013.03.024. Li CQ, Li GJ, Ji CX, et al. The characteristics and clinical application of the ArcCHECK diode array for volumetric-modulated arc therapy verification[J]. Chin J Radiat Oncol, 2013, 22(3):253-257. DOI:10.3760/cma.j.issn.1004-4221.2013.03.024. [9] Wieslander E, Knöös T. Dose perturbation in the presence of metallic implants:treatment planning system versus Monte Carlo simulations[J]. Phys Med Biol, 2003, 48(20):295-305. DOI:10.1088/0031-9155/48/20/003. [10] Moliner G, Sorro L, Verstraet R, et al. Assessment of combined use of ArcChech® detectorand portal dosimetry for delivery quality assurance of head and neck and prostate volumetric-modulated arc therapy[J]. J Appl Clin Med Phys, 2018, 19(6):133-139. DOI:10.1002/acm2.12460. [11] Chuter RW, Rixham PA, Weston SJ, et al. Feasibility of portal dosimetry for flattening filter-free radiotherapy[J]. J Appl Clin Med Phys, 2016, 17(1):112-120. DOI:10.1120/jacmp.v17i1.5686. [12] 朱金汉, 王彬, 梁健, 等. 基于简化机头模型与筒串卷积算法的调强计划独立三维剂量验算[J]. 中华放射肿瘤学杂志,2017, 26(7):795-799. DOI:10.3760/cma.j.jssn.1004-4221.2017.07.016. Zhu JH, Wang B, Liang J, et al. Independent 3D dose calculation for IMRT based on simplification of beam model and collapsed-cone convolution/superposition algorithm[J]. Chin J Radiat Oncol, 2017, 26(7):795-799. DOI:10.3760/cma.j.jssn.1004-4221.2017.07.016.