[an error occurred while processing this directive] | [an error occurred while processing this directive]
Study of feasibility of exchanging intensity-modulated radiotherapy plans after beam matching on two Linacs
Fang Chunfeng1, Xu Shouping2, Hou Jun1, Song Yuanyuan1, Xu Wei2, Cao Lin1, Yang Tao2, Wang Zishen1, Xie Dong1, Zhu Longlin1, Qu Baolin2
1Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou 072750, China; 2Department of Radiation Oncology, the First Medical Center of PLA General Hospital, Beijing, 100853, China
AbstractObjective To explore the feasibility of the clinical implementation of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans with 6MV photon on two Elekta Linacs (Versa HD and Synergy) after beam matching. Methods The images of 12 patients with nasopharyngeal carcinoma, central lung cancer and prostate cancer were randomly selected, and the IMRT and VMAT plans were designed. Two different dose tools of ionization chamber and three-dimensional detector ArcCheck were used to verify the individualized radiation treatment of 6MV photon beams on two Linacs and compare the differences. Results The deviations between the doses of two Linacs (Versa HD and Synergy) measured by the ion chamber and treatment planning system were (0.32±1.32)% and (0.54±1.29)%. The differences of all plans were within the range of ±3%, and the deviations of the point dose between two Linacs were within the range of ±2% with no statistical significance (both P>0.05). The γ analysis of verification using ArcCheck showed that the passing rates of all plans under the 2mm/3% and 3mm/3% with 10% threshold conditions were over 95%, respectively. The average differences between two Linacs were 0.19%(2mm/3%) and 0.09%(3mm/3%). Conclusions The results of performing IMRT/VMAT plans on two Linacs meet the clinical requirements and the differences between two Linacs are small. Hence, the same plans can be implemented interchangeably on different Linacs.
Fund:National Key Research and Development Program (2017YFC0112105;National Natural Science Foundation of China for Distinguished Young Scholars (61601012)
Fang Chunfeng,Xu Shouping,Hou Jun et al. Study of feasibility of exchanging intensity-modulated radiotherapy plans after beam matching on two Linacs[J]. Chinese Journal of Radiation Oncology, 2021, 30(7): 702-706.
Fang Chunfeng,Xu Shouping,Hou Jun et al. Study of feasibility of exchanging intensity-modulated radiotherapy plans after beam matching on two Linacs[J]. Chinese Journal of Radiation Oncology, 2021, 30(7): 702-706.
[1] Xu ZZ, Warrell G, Lee S, et al. Assessment of beam-matched linacs quality/accuracy for interchanging SBRT or SRT patient using VMAT without replanning[J]. J Appl Clin Med Phys, 2019, 20(1):68-75. DOI:10.1002acm2.12492. [2] Rijken J, Schachenmayr H, Crowe S, et al. Distributive quality assurance and delivery of stereotactic ablative radiotherapy treatments amongst beam matched linear accelerators:a feasibility study[J]. J Appl Clin Med Phys, 2019, 20(4):99-105. DOI:10.1002acm2.12567. [3] Ashokkumar S, Ganesh KM, Ramalingam K, et al. Dosimetric validation of volumetric modulated Arc therapy with three 6MV beam-matched linear accelerators[J]. Asian Pact J Cancer Prev, 2017, 18(12):3439-3444. DOI:10.22034/APJCP.2017.18.12.3439. [4] Narayanasamy G, Saenz DL, Defoor D, et al. Dosimetric validation of Monaco treatment planning system on an Elekta VersaHD linear accelerator[J]. J Appl Clin Med Phys, 2017, 18(6):123-129. DOI:10.1002acm2.12188. [5] Snyder JE, Hyer DE, Flynn RT, et al. The commissioning and validation of Monaco treatment planning system on an Elekta VersaHD linear accelerator[J]. J Appl Clin Med Phys, 2019, 20(1):184-193. DOI:10.1002acm2.12507. [6] 方春锋,徐伟,宋圆源,等. 两台Elekta直线加速器匹配后束流特性比较[J]. 中国医学物理学杂志, 2020,37(1):1-6. DOI:10.3969/j.issn.1005-202X.2020.01.001. Fang CF, Xu W, Song YY, et al. Comparison and analysis of beam characteristics with beam matching in two Elekta Linacs[J]. Chin J Med Phys, 2020,37(1):1-6. DOI:10.3969/j.issn.1005-202X.2020.01.001. [7] Loughery B, Knill C, Silverstein E, et al. Multi-institutional evaluation of end-to-end protocol for IMRT/VMAT treatment chains utilizing conventional linacs[J]. Med Dosim, 2019, 44(1):61-66. DOI:10.1016/j.meddos.2018.02.002. [8] Klein EE, Hanley J, Bayouth J, et al. Task Group 142 report:quality assurance of medical acceleratorsa[J]. Med Phys, 2009, 36(9):4197-4212. DOI:10.1118/1.3190392. [9] Fraass B, Doppke K, Hunt M, et al. American association of physicists in medicine radiation therapy committee task group 53:quality assurance for clinical radiotherapy treatment planning[J]. Med Phys, 1998, 25(10):1773-1829. DOI:10.1118/1.598373. [10] Ezzell GA, Burmeister JW, Dogan N, et al. IMRT commissioning:multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119[J]. Med Phys, 2009, 36(11):5359-5373. DOI:10.1118/1.3238104. [11] Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA:recommendations of AAPM Task Group No. 218[J]. Med Phys, 2018, 45(4):e53-e83. DOI:10.1002/mp.12810. [12] Beyer GP. Commissioning measurements for photon beam data on three TrueBeam linear accelerators, and comparison with Trilogy and Clinac 2100 linear accelerators[J]. J Appl Clin Med Phys, 2013, 14(1):273-288. DOI:10.1120/jacmp.v14i1.4077. [13] Kairn T, Asena A, Charles PH, et al. Field size consistency of nominally matched linacs[J]. Australas Phys Eng Sci Med, 2015, 38(2):289-297. DOI:10.1007/s13246-015-0349-2. [14] Bhangle JR, Narayanan VKS, Kumar NK, et al. Dosimetric analysis of beam-matching procedure of two similar linear accelerators[J]. J Med Phys, 2011, 36(3):176-180. DOI:10.4103/0971-6203.83497. [15] Sarkar B, Manikandan A, Nandy M, et al. A mathematical approach to beam matching[J]. Br J Radiol, 2013, 86(1031):20130238. DOI:10.1259/bjr.20130238. [16] Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM task group No.105:issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning[J]. Med Phys, 2007, 34(12):4818-4853. DOI:10.1118/1.2795842. [17] Nelms BE, Zhen H, Tomé WA. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors[J]. Med Phys, 2011, 38(2):1037-1044. DOI:10.1118/1.3544657. [18] Nguyen VN, Wang B, Shi C. A sensitivity dosimetry study of the setup uncertainties during machine commissioning and annual QA[J]. Int J Med Phys Clin Eng Radiat Oncol, 2016, 5(4):329-347. DOI:10.4236/ijmpcero.2016.54032.