[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress on application of image registration methods in target volume delineation of breast tumor bed
Xie Xin, Dai Jianrong
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
Abstract Accurate delineation of breast tumor bed and its target volume is of great importance in the planning of postoperative radiotherapy. Registration of different medical images and radiotherapy-oriented CT images can provide more comprehensive information, which can assist radiation oncologists to delineate the target contours. Image registration methods can be divided into the rigid and non-rigid types according to geometrical transformation property. Due to complex and non-rigid deformation of soft tissues, it is difficult to utilize rigid registration to strictly align the non-rigid structures. Non-rigid registration tends to achieve better results. In this article, the application of two types of registration methods in target volume delineation of breast tumor bed was reviewed and the existing problems in clinical practice were analyzed and the research direction of non-rigid registration was prospected.
Fund:Beijing Hope Run Special Fund of Cancer Foundation of China (LC2018A08)
Corresponding Authors:
Dai Jianrong, Email:dai_jianrong@163.com
Cite this article:
Xie Xin,Dai Jianrong. Research progress on application of image registration methods in target volume delineation of breast tumor bed[J]. Chinese Journal of Radiation Oncology, 2020, 29(10): 919-924.
Xie Xin,Dai Jianrong. Research progress on application of image registration methods in target volume delineation of breast tumor bed[J]. Chinese Journal of Radiation Oncology, 2020, 29(10): 919-924.
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. DOI:10.3322/caac.21492. [2] Blichert-Toft M, Nielsen M, During M, et al. Long-term results of breast conserving surgery mastectomy for early stage invasive breast cancer:20-year follow-up of the Danish randomized DBCG-82TM protocol[J]. Acta Oncol, 2008, 47(4):672-681. DOI:10.1080/02841860801971439. [3] Litiere S, Werutsky G, Fentiman IS, et al. Breast conserving therapy versus mastectomy for stage Ⅰ-Ⅱ breast cancer:20 year follow-up of the EORTC 10801 phase 3 randomised trial[J]. Lancet Oncol, 2012, 13(4):412-419. DOI:10.1016/s1470-2045(12)70042-6. [4] Mutic S, Dempsey JF. The ViewRay system:magnetic resonance-guided and controlled radiotherapy[J]. Semin Radiat Oncol, 2014, 24(3):196-199. DOI:10.1016/j.semradonc.2014.02.008. [5] Landis DM, Luo W, Song J, et al. Variability among breast radiation oncologists in delineation of the postsurgical lumpectomy cavity[J]. Int J Radiat Oncol Biol Phys, 2007, 67(5):1299-1308. DOI:10.1016/j.ijrobp.2006.11.026. [6] van Mourik AM, Elkhuizen PH, Minkema D, et al. Multiinstitutional study on target volume delineation variation in breast radiotherapy in the presence of guidelines[J]. Radiother Oncol, 2010, 94(3):286-291. DOI:10.1016/j.radonc.2010.01.009. [7] Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy:Report of the AAPM Radiation Therapy Committee Task Group No. 132[J]. Med Phys, 2017, 44(7):e43-76. DOI:10.1002/mp.12256. [8] 孙鸿飞, 倪昕晔. 医学图像配准分类及在放疗中的应用进展[J]. 中华放射肿瘤学杂志, 2017, 26(12):1457-1460. DOI:10.3760/cma.j.issn.1004-4221.2017.12.022. Sun HF, Ni XY. Classification of medical image registration and its application in radiotherapy[J]. Chin J Radiat Oncol, 2017, 26(12):1457-1460. DOI:10.3760/cma.j.issn.1004-4221.2017.12.022. [9] Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration:a survey[J]. IEEE Trans Med Imaging, 2013, 32(7):1153-1190. DOI:10.1109/tmi.2013.2265603. [10] Oh S, Kim S. Deformable image registration in radiation therapy[J]. Radiat Oncol J, 2017, 35(2):101-111. DOI:10.3857/roj.2017.00325. [11] 顾恒乐, 聂生东. 多模医学图像配准和融合方法及其临床应用进展[J]. 中华放射肿瘤学杂志, 2016, 25(8):902-906. DOI:10.3760/cma.j.issn.1004-4221.2016.08.024. Gu HL, Nie SD. Research advances in multi-modality medical image registration and fusion methods and their clinical application[J]. Chin J Radiat Oncol, 2016, 25(8):902-906. DOI:10.3760/cma.j.issn.1004-4221.2016.08.024. [12] Kirova YM, Fournier-Bidoz N, Servois V, et al. How to boost the breast tumor bed? A multidisciplinary approach in eight steps[J]. Int J Radiat Oncol Biol Phys, 2008, 72(2):494-500. DOI:10.1016/j.ijrobp.2007.12.059. [13] Kirova YM, Castro Pena P, Hijal T, et al. Improving the definition of tumor bed boost with the use of surgical clips and image registration in breast cancer patients[J]. Int J Radiat Oncol Biol Phys, 2010, 78(5):1352-1355. DOI:10.1016/j.ijrobp.2009.10.049. [14] Boersma LJ, Janssen T, Elkhuizen PH, et al. Reducing interobserver variation of boost-CTV delineation in breast conserving radiation therapy using a pre-operative CT and delineation guidelines[J]. Radiother Oncol, 2012, 103(2):178-182. DOI:10.1016/j.radonc.2011.12.021. [15] Jolicoeur M, Racine ML, Trop I, et al. Localization of the surgical bed using supine magnetic resonance and computed tomography scan fusion for planification of breast interstitial brachytherapy[J]. Radiother Oncol, 2011, 100(3):480-484. DOI:10.1016/j.radonc.2011.08.024. [16] Ford EC, Lavely WC, Frassica DA, et al. Comparison of FDG-PET-CT and CT for delineation of lumpectomy cavity for partial breast irradiation[J]. Int J Radiat Oncol Biol Phys, 2008, 71(2):595-602. DOI:10.1016/j.ijrobp.2008.02.004. [17] Kirby AM, Yarnold JR, Evans PM, et al. Tumor bed delineation for partial breast and breast boost radiotherapy planned in the prone position:what does MRI add to X-ray CT localization of titanium clips placed in the excision cavity wall?[J]. Int J Radiat Oncol Biol Phys, 2009, 74(4):1276-1282. DOI:10.1016/j.ijrobp.2009.02.028. [18] Mast M, Coerkamp E, Heijenbrok M, et al. Target volume delineation in breast conserving radiotherapy:are co-registered CT and MR images of added value?[J]. Radiat Oncol, 2014, 9(1):65. DOI:10.1186/1748-717x-9-65. [19] Jacobson G, Zamba G, Betts V, et al. Image-based treatment planning of the post-lumpectomy breast utilizing CT and 3TMRI[J]. Int J Breast Cancer, 2011, 75(3):246265. DOI:10.4061/2011/246265. [20] Berrang TS, Truong PT, Popescu C, et al. 3D ultrasound can contribute to planning CT to define the target for partial breast radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2009, 73(2):375-383. DOI:10.1016/j.ijrobp.2008.04.041. [21] Pezner RD, Tan MC, Clancy SL, et al. Radiation therapy for breast cancer patients who undergo oncoplastic surgery:localization of the tumor bed for the local boost[J]. Am J Clin Oncol, 2013, 36(6):535-539. DOI:10.1097/COC.0b013e318256efba. [22] Loi G, Fusella M, Lanzi E, et al. Performance of commercially available deformable image registration platforms for contour propagation using patient-based computational phantoms:A multi-institutional study[J]. Med Phys, 2018, 45(2):748-757. DOI:10.1002/mp.12737. [23] Cho O, Chun M, Oh YT, et al. Can initial diagnostic PET-CT aid to localize tumor bed in breast cancer radiotherapy:feasibility study using deformable image registration[J]. Radiat Oncol, 2013, 8(1):163. DOI:10.1186/1748-717x-8-163. [24] Yu T, Li JB, Wang W, et al. A comparative study based on deformable image registration of the target volumes for external-beam partial breast irradiation defined using preoperative prone magnetic resonance imaging and postoperative prone computed tomography imaging[J]. Radiat Oncol, 2019, 14(1):38. DOI:10.1186/s13014-019-1244-x. [25] Hilts M, Batchelar D, Rose J, et al. Deformable image registration for defining the postimplant seroma in permanent breast seed implant brachytherapy[J]. Brachytherapy, 2015, 14(3):409-418. DOI:10.1016/j.brachy.2014.11.003. [26] Wodzinski M, Skalski A, Kedzierawski P, et al. Application of B-splines FFD image registration in breast cancer radiotherapy planning[C]// 2017 International Conference on Systems, Signals and Image Processing, 2017:1-5. DOI:10.1109/IWSSIP.2017.7965578. [27] Wodzinski M, Skalski A, Kedzierawski P, et al. Usage of ICP algorithm for initial alignment in B-splines FFD image registration in breast cancer radiotherapy planning[C]// Polish Conference on Biocybernetics and Biomedical Engineering, 2018:143-152. DOI:10.1007/978-3-319-66905-2_12. [28] Wodzinski M, Skalski A, Ciepiela I, et al. Improving oncoplastic breast tumor bed localization for radiotherapy planning using image registration algorithms[J]. Phys Med Biol, 2018, 63(3):035024. DOI:10.1088/1361-6560/aaa4b1. [29] Wodzinski M, Skalski A, Ciepiela I, et al. Application of demons image registration algorithms in resected breast cancer lodge localization[C]// 2017 Signal Processing:Algorithms, Architectures, Arrangements, and Applications, 2017:400-405. DOI:10.23919/SPA.2017.8166900. [30] Kirova YM, Servois V, Reyal F, et al. Use of deformable image fusion to allow better definition of tumor bed boost volume after oncoplastic breast surgery[J]. Surg Oncol, 2011, 20(2):e123-125. DOI:10.1016/j.suronc.2011.02.001. [31] Zhong H, Kim J, Gordon JJ, et al. Morphological analysis of tumor regression and its impact on deformable image registration for adaptive radiotherapy of lung cancer patients[C]// World Congress on Medical Physics and Biomedical Engineering, 2015:579-582. DOI:10.1007/978-3-319-19387-8_142. [32] Sharifi H, Zhang H, Bagher-Ebadian H, et al. Utilization of a hybrid finite-element based registration method to quantify heterogeneous tumor response for adaptive treatment for lung cancer patients[J]. Phys Med Biol, 2018, 63(6):065017. DOI:10.1088/1361-6560/aab235. [33] Berendsen FF, Kotte AN, de Leeuw AA, et al. Registration of structurally dissimilar images in MRI-based brachytherapy[J]. Phys Med Biol, 2014, 59(15):4033-4045. DOI:10.1088/0031-9155/59/4/4033. [34] Kwon D, Niethammer M, Akbari H, et al. PORTR:Pre-operative and post-recurrence brain tumor registration[J]. IEEE Trans Med Imaging, 2014, 33(3):651-667. DOI:10.1109/tmi.2013.2293478. [35] Hang Z, Rivaz H. Robust deformable registration of pre-and post-resection ultrasound volumes for visualization of residual tumor in neurosurgery[J]. Conf Proc IEEE Eng Med Biol Soc, 2015, 34(1):141-144. DOI:10.1109/embc.2015.7318320. [36] Alderliesten T, Sonke JJ, Bosman PAN. Deformable image registration by multi-objective optimization using a dual-dynamic transformation model to account for large anatomical differences[C]// SPIE Proceedings Medical Imaging 2013:Image Processing, 2013, 8669:866910. DOI:10.1117/12.2006783. [37] Bartelink H, Bourgier C, Elkhuizen P. Has partial breast irradiation by IORT or brachytherapy been prematurely introduced into the clinic?[J]. Radiother Oncol, 2012, 104(2):139-142. DOI:10.1016/j.radonc.2012.07.010. [38] Major T, Gutierrez C, Guix B, et al. Recommendations from GECESTRO Breast Cancer Working Group (Ⅱ):Target definition and target delineation for accelerated or boost partial breast irradiation using multicatheter interstitial brachytherapy after breast conserving open cavity surgery[J]. Radiother Oncol, 2016, 118(1):199-204. DOI:10.1016/j.radonc.2015.12.006. [39] Lu X, Zhang S, Yang W, et al. SIFT and shape information incorporated into fluid model for non-rigid registration of ultrasound images[J]. Compu. Methods Programs Biomed, 2010, 100(2):123-131. DOI:10.1016/j.cmpb.2010.03.005. [40] Kim M, Wu G, Shen D. Hierarchical alignment of breast DCE-MR images by groupwise registration and robust feature matching[J]. Med Phys, 2012, 39(1):353-366. DOI:10.1118/1.3665705. [41] Cao X, Yang J, Zhang J, et al. Deformable image registration using a cue-aware deep regression network[J]. IEEE Trans Biomed Eng, 2018, 65(9):1900-1911. DOI:10.1109/tbme.2018.2822826. [42] Balakrishnan G, Zhao A, Sabuncu MR, et al. An unsupervised learning model for deformable medical image registration[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018:9252-9260. DOI:10.1109/CVPR.2018.00964. [43] de Vos BD, Berendsen FF, Viergever MA, et al. End-to-end unsupervised deformable image registration with a convolutional neural network[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2017:204-212. DOI:10.1007/978-3-319-67558-9_24. [44] Yang TJ, Tao R, Elkhuizen PH, et al. Tumor bed delineation for external beam accelerated partial breast irradiation:a systematic review[J]. Radiother Oncol, 2013, 108(2):181-189. DOI:10.1016/j.radonc.2013.05.028. [45] Pluim JP, Maintz JB, Viergever MA. Mutual-information-based registration of medical images:a survey[J]. IEEE Trans Med Imaging, 2003, 22(8):986-1004. DOI:10.1109/tmi.2003.815867. [46] Cao X, Yang J, Wang L, et al. Deep learning based inter-modality image registration supervised by intra-modality similarity[J]. Mach Learn Med Imag, 2018, 11046:55-63. DOI:10.1007/978-3-030-00919-9_7.