[an error occurred while processing this directive]|[an error occurred while processing this directive]
OSI用于引导放疗摆位精度和稳定性研究
杨露, 钟仁明, 李光俊, 沈九零, 李丽琴, 柏森
430060 武汉大学人民医院放疗科(杨露);610064 成都,四川大学华西医院放射物理技术中心
Research on the precision and stability of optical surface imaging technology in guiding radiotherapy positioning
Yang Lu,Zhong Renming,Li Guangjun,Shen Jiuling,Li Liqin,Bai Sen
Department of Radiotherapy,Renmin Hospital of Wuhan University,Wuhan 430060,China (Yang L);Radiation Physics Technology Center,West China Hospital of Sichuan University,Chengdu 610041,China
Abstract: Objective To investigate the precision and stability of optical surface imaging (OSI) system Catalyst in guiding radiotherapy positioning. Methods A total of 52 patients with five different tumor sites who underwent cone-beam computed tomography (CBCT)-guided radiotherapy were recruited in this investigation. For the first treatment fraction,the setup error was recorded as C after online CBCT correction, and the surface images of patients taken by Catalyst were set as the reference images Cref. For the following treatment fraction,patients were pre-corrected according to the Catalyst Cref image with the acceptable errors within 2 mm/ 2,and the pre-corrected errors were recorded as C1.Then,after online CBCT correction,the setup errors were recorded as C.The errors between post-corrected Catalyst surface image and Cref image were recorded as C2.For each treatment fraction,the difference between Catalyst correction errors C1 and CBCT corrected errors C was recorded as d1, and the difference between the post-corrected Catalyst errors C2 and Cref image was recorded as d2. d3=d1-d2.The values of d1 and d3 in the 6 dimensions were analyzed using single sample t-test. The correlation between C-C1 and d1-d2 was statistically analyzed by Pearson correlation analysis. Results The mean value of d1 and d3 for 52 patients were within 2 mm/ 2 °. CBCT-C1 and d1-d2 were both significantly correlated (R=3,7,P=0.00,0.01). Conclusions OSI system yield high accuracy and stability in radiotherapy positioning,which is of certain significance in radiotherapy positioning for cancer patients.
Yang Lu,Zhong Renming,Li Guangjun et al. Research on the precision and stability of optical surface imaging technology in guiding radiotherapy positioning[J]. Chinese Journal of Radiation Oncology, 2018, 27(4): 387-391.
[1] 殷蔚伯,谷铣之.肿瘤放疗学[M].3版.北京:中国协和医科大学出版社,2002:115. Yin WB,Gu XZ.Tumor radiotherapy[M].3 ed. Beijing:China Medical University Publishing House,2002:115. [2] 李前文,周后龙,王正军,等.质量监控对放疗摆位重复性精度的影响[J].东南国防医药,2007,9(3):217.DOI:10.3969/j.issn.1672-271X.2007.03.028. Li QW,Zhou HL,Wang ZJ,et al. Effect of quality monitoring on repetitive accuracy of radiation pendulum[J].Southeast Defence Medicine,2007,9(3):217.DOI:10.3969/j.issn.1672-271X.2007.03.028. [3] Sutton MW,Fontenot JD,Matthews Ⅱ KL,et al. Accuracy and precision of cone-beam computed tomography guided intensity modulated radiation therapy[J].Pract Radiat Oncol,2014,4(1):e67-e73.DOI:10.1016/j.prro.2013.02.006. [4] 于金明,袁双虎.图像引导放疗研究及其发展[J].中华肿瘤杂志,2006,28(2):81-83.DOI:10.3760/j.issn:0253-3766.2006.02.001. Yu JM,Yuan SH.Research and advancement of image-guided radiotherapy[J].Chin J Oncol,2006,28(2):81-83.DOI:10.3760/j.issn:0253-3766.2006.02.001. [5] Den RB,Doemer A,Kubicek G,et al. Daily image guidance with cone-beam computed tomography for head-and-neck cancer intensity-modulated radiotherapy:a prospective study[J].Int J Radiat Oncol Biol Phys,2010,76(5):1353-1359.DOI:10.1016/j.ijrobp.2009.03.059. [6] Bell LJ,Cox J,Eade T,et al. Determining optimal planning target volume and image guidance policy for post-prostatectomy intensity modulated radiotherapy[J].Radiat Oncol,2015,10:151.DOI:10.1186/s13014-015-0467-8. [7] Ung NM,Wee L.Fiducial registration error as a statistical process control metric in image-guidance radiotherapy with fiducial markers[J].Phys Med Biol,2011,56(23):7473-7485.DOI:10.1088/0031-9155/56/23/009. [8] Rathod S,Munshi A,Agarwal J.Skin markings methods and guidelines:a reality in image guidance radiotherapy era[J].South Asian J Cancer,2012,1(1):27-29.DOI:10.4103/2278-330X.96502. [9] Amies C,Bani-Hashemi A,Celi JC,et al. A multi-platform approach to image guided radiation therapy (IGRT)[J].Med Dosim,2006,31(1):12-19.DOI:10.1016/j.meddos.2005.12.013. [10] Shameem TJ.Evaluation of AutoCAL for electronic portal imaging device-based multi-leaf collimator quality assurance[J].Radiol Phys Technol,2016,9(1):95-98.DOI:10.1007/s12194-015-0338-x. [11] Sun YN,Ge H,Cheng SG,et al. Evaluation of interfractional variation of the centroid position and volume of internal target volume during stereotactic body radiotherapy of lung cancer using cone-beam computed tomography[J].J Appl Clin Med Phys,2016,17(2):461-472.DOI:10.1120/jacmp.v17i2.5835. [12] Steinke MF,Bezak E.Technological approaches to in-room CBCT imaging[J].Australas Phys Eng Sci Med,2008,31(3):167-179.DOI:10.1007/BF03179341. [13] 张书旭.4D-CT重建及其在放疗中的应用研究[D].广州:南方医科大学,2009. Zhang SX.Four-dimensional computed tomography reconstruction and application in radiation therapy[D].Guangzhou:Southern Medical University,2009. [14] Staub D,Docef A,Brock RS,et al.4D Cone-beam CT reconstruction using a motion model based on principal component analysis[J].Med Phys,2011,38(12):6697-6709.DOI:10.1118/1.3662895. [15] Alderliesten T,Sonke JJ,Betgen A,et al.3D surface imaging for monitoring intrafraction motion in frameless stereotactic body radiotherapy of lung cancer[J].Radiother Oncol,2012,105(2):155-160.DOI:10.1016/j.radonc.2012.08.016. [16] Dong B,Graves YJ,Jia X,et al. Optimal surface marker locations for tumor motion estimation in lung cancer radiotherapy[J].Phys Med Biol,2012,57(24):8201-8215.DOI:10.1088/0031-9155/57/24/8201. [17] Wiant DB,Wentworth S,Maurer JM,et al. Surface imaging-based analysis of intrafraction motion for breast radiotherapy patients[J].J Appl Clin Med Phys,2014,15(6):147-159.DOI:10.1120/jacmp.v15i6.4957. [18] Fayad H,Pan T,Clément JF,et al. Technical note:correlation of respiratory motion between external patient surface and internal anatomical landmarks[J].Med Phys,2011,38(6):3157-3164.DOI:10.1118/1.3589131. [19] Pallotta S,Vanzi E,Simontacch G,et al. Clinical evaluation of a commercial surface-imaging system for patient positioning in radiotherapy[J].Strahlenther Onkol,2012,188(12):1080-1084. [20] 钟仁明,许峰,何垠波,等.用主动呼吸控制提高肺癌图像引导放疗精度[J].中华放射肿瘤学杂志,2007,16(6):432-434.DOI:10.3760/j.issn:1004-4221.2007.06.006. Zhong RM,Xu F,He YB,et al. Active breath coordinator enhances the precision of image guided radiotherapy for lung cancer[J].Chin J Radiat Oncol,2007,16(6):432-434.DOI:10.3760/j.issn:1004-4221.2007.06.006. [21] Stieler F,Wenz F,Shi M,et al. A novel surface imaging system for patient positioning and surveillance during radiotherapy:a phantom study and clinical evaluation[J].Strahlenther Onkol,2013,189(11):938-944.DOI:10.1007/s00066-013-0441-z. [22] Stieler F,Wenz F,Scherrer D,et al. Clinical evaluation of a commercial surface-imaging system for patient positioning in radiotherapy[J].Strahlenther Onkol,2012,188(12):1080-1084.DOI:10.1007/s00066-012-0244-7. [23] Kim Y,Li RJ,Na YH,et al. Accuracy of surface registration compared to conventional volumetric registration in patient positioning for head-and-neck radiotherapy:a simulation study using patient data[J].Med Phys,2014,41(12):121701.DOI:10.1118/1.4898103. [24] Li G,Huang HL,Wei J,et al. Novel spirometry based on optical surface imaging[J].Med Phys,2015,42(4):1690-1697.DOI:10.1118/1.4914391. [25] Wiersma RD,Tomarken SL,Grelewicz Z,et al. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking[J].Med Phys,2013,40(11):111712.DOI:10.1118/1.4823757.