Department of Radiation Oncology,Peking University Cancer Hospital&
Institute,Key laboratory of Carcinogenesis and Translational Research,Ministry of Education/Beijing,Beijing 100142,China (Jiang F,Wu H,Zhang J,Zhang YB);
National Institute of Metrology,Beijing 100029,China (Wang K,Zhang H)
Objective To evaluate the dosimetric errors of organs-at-risk (OARs) induced by the optimal auto-segmentation using Mim Maestro based on dose calculation and measurement. Methods The Mim atlas library composed of 240 nasopharyngeal carcinoma, breast cancer, and rectal cancer patients that were retrospectively selected was used for the auto-segmentation of OARs on the CT images of corresponding regions in 76 patients. Relative to the manual contouring, one optimal case was selected from each site based on conformity index (CI), mean distance to conformity (MDC), relative volume difference (Dv%), DICE, sensitivity index (Se. Idx), and inclusion index (Inc. Idx). Treatment plans were made to satisfy the DVH constraints of OARs based on auto-contours, and then the dose errors to the actual organs were evaluated in terms of calculation and measurement. The paired t-test (normal distribution) or rank sum test (non-normal distribution). Results Significant differences were observed in the 76 patients between the manual and automated segmentation (P<0.05). For the optimal cases, the DICE index of various OARs ranged from 0.43 to 0.98,and 73%(16/22) of DICE values were higher than 0.70. The calculated dose errors to various OARs were (-1.15±15.94)%(95% CI:-8.21% to 5.92%)(mean dose) and (-6.53±21.13)%(95% CI:-15.90% to 2.84%)(maximum dose). The measured dose errors were (-2.43±24.52)%(95% CI:-13.30% to 8.44%)(mean dose) and (-3.38±20.87)%(95% CI:-12.63% to 5.87%)(maximum dose). Conclusion Without human interference, even the optimal auto-segmentation Results are not clinically acceptable for treatment planning.
Jiang Fan,Wu Hao,Zhang Jian et al. A dosimetric evaluation of treatment planning based on optimal auto-segmentation[J]. Chinese Journal of Radiation Oncology, 2017, 26(4): 423-428.
[1] Chao KSC,Bhide S,Chen HS,et al. Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach[J].Int J Radiat Oncol Biol Phys,2007,68(5):1512-1521.DOI:10.1016/j.ijrobp.2007.04.037
[2] Young AV,Wortham A,Wernick I,et al. Atlas-based segmentation improves consistency and decreases time required for contouring postoperative endometrial cancer nodal volumes[J].Int J Radiat Oncol Biol Phys,2011,79(3):943-947.DOI:10.1016/j.ijrobp.2010.04.063
[3] Langmack KA,Perry C,Sinstead C,et al. The utility of atlas-assisted segmentation in the male pelvis is dependent on the interobserver agreement of the structures segmented[J].Br J Radiol,2014,87(1043):20140299.DOI:10.1259/bjr.20140299
[4] Nord J,Peltola J.Apparatus and method to facilitate adapting a radiation treatment plan:US,12/207265[P].2010-03-11
[5] Zhang TZ,Chi YW,Meldolesi E,et al. Automatic delineation of on-line head-and-neck computed tomography images:toward on-line adaptive radiotherapy[J].Int J Rad Oncol Biol Phys,2007,68(2):522-530.DOI:10.1016/j.ijrobp.2007.01.038
[6] Zhou W,Xie YQ.Interactive contour delineation and refinement in treatment planning of image-guided radiation therapy[J].J Appl Clin Med Phys,2014,15(1):4499.DOI:10.1120/jacmp.v15i1.4499
[7] Huyskens DP,Maingon P,Vanuytsel L,et al. A qualitative and a quantitative analysis of an auto-segmentation module for prostate cancer[J].Radiother Oncol,2009,90(3):337-345.DOI:10.1016/j.radonc.2008.08.007
[8] Teguh DN,Levendag PC,Voet PWJ,et al. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck[J].Int J Radiat Oncol Biol Phys,2011,81(4):950-957.DOI:10.1016/j.ijrobp.2010.07.009
[9] Gambacorta MA,Valentini C,Dinapoli N,et al. Clinical validation of atlas-based auto-segmentation of pelvic volumes and normal tissue in rectal tumors using auto-segmentation computed system[J].Acta Oncol,2013,52(8):1676-1681.DOI:10.3109/0284186X.2012.754989.
[10] Stapleford LJ,Lawson JD,Perkins C,et al. Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer[J].Int J Radiat Oncol Biol Phys,2010,77(3):959-966.DOI:10.1016/j.ijrobp.2009.09.023.
[11] Hwee J,Louie AV,Gaede S,et al. Technology assessment of automated atlas based segmentation in prostate bed contouring[J].Radiat Oncol,2011,6:110.DOI:10.1186/1748-717X-6-110.
[12] Anders LC,Stieler F,Siebenlist K,et al. Performance of an atlas-based autosegmentation software for delineation of target volumes for radiotherapy of breast and anorectal cancer[J].Radiat Oncol,2012,102(1):68-73.DOI:10.1016/j.radonc.2011.08.043.
[13] Sims R,Isambert A,Grégoire V,et al. A pre-clinical assessment of an atlas-based automatic segmentation tool for the head and neck[J].Radiat Oncol,2009,93(3):474-478.DOI:10.1016/j.radonc.2009.08.013.
[14] 单书灿,邱杰,全红,等.自动勾画软件对鼻咽癌靶区和危及器官勾画结果对比分析[J].中国医学装备,2015,12(7):33-36.DOI:10.3969/J.ISSN.1672-8270.2015.07.012.
Shan SC,Qiu J,Quan H,et al. Comparison of the two softwares for ABAS in NPC[J].China Med Equip,2015,12(7):33-36.DOI:10.3969/J.ISSN.1672-8270.2015.07.012.
[15] La Macchia M,Fellin F,Amichetti M,et al. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck,prostate and pleural cancer[J].Radiat Oncol,2012,7(1):160.DOI:10.1186/1748-717X-7-160.
[16] 张艺宝,吴昊,李莎,等.临床前验证与几何对比分析基于图谱库的危及器官自动勾画[J].中国医学物理学杂志,2015,32(6):761-767.DOI:10.3969/j.issn.1005-202X.2015.06.001.
Zhang YB,Wu H,Li S,et al. Pre-clinical verification and geometric comparative analysis of atlas-based automatic delineation for organs at risk[J].Chin J Med Phys,2015,32(6):761-767.DOI:10.3969/j.issn.1005-202X.2015.06.001.
[17] Zou KH,Warfield SK,Bharatha A,et al. Statistical validation of image segmentation quality based on a spatial overlap index[J].Acad Radiol,2004,11(2):178-189.DOI:10.1016/S1076-6332(03)00671-8.
[18] Sharpe MB,Moore KL,Orton CG.Point/Counterpoint:within the next ten years treatment planning will become fully automated without the need for human intervention[J].Med Phys,2014,41(12):120601.DOI:10.1118/1.4894496.