Abstract:Objective To use the fusion image of the end-inhalation holding (EIH) phase and end-exhalation holding (EEH) phase to define the target volume of individual patient with liver cancer, and to evaluate the target geometry, feasibility, and clinical significance of the technology. Methods Eighteen patients with liver cancer who were treated in our hospital from 2012 to 2013 were enrolled as subjects. With the same posture and scan range, all patients underwent contrast-enhanced three-dimensional computed tomography (3DCT) scans in the phases of free breathing (FB), EIH, and EEH. Gross tumor volume (GTV), clinical target volume (CTV), and organ of risk (OAR) were delineated on the above images. CTVFB was defined as GTV on the FB phase image (GTVFB) plus a margin of 10 mm, while planning target volume (PTVFB) was defined as CTVFB plus a margin of 10 mm in the right-left and anterior-posterior directions and a margin of 20 mm in the superior-inferior direction. GTVEI and GTVEE were defined as GTV on the EIH and EEH images, respectively. Based on the EEH images, the registered EEH and EIH images were fused to form GTVEI+EI. CTVEI+EE was defined as GTVEI+EI plus a margin of 10 mm, while PTVEI+EE was defined as CTVEI+EE plus a margin of 5 mm in the right-left and anterior-posterior directions and a margin of 10 mm in the superior-inferior direction. The Pinnacle3 v8.0m treatment planning system was used to design two 3D conformal radiotherapy plans for each patient. The volume, degree of inclusion (DI), matching index (MI), and central displacement of CTVFB and CTVEI+EE, as well as PTVFB and PTVEI+EE, were compared between the two plans. Results In the 18 patients, the mean CTVFB was significantly smaller than the mean CTVEI+EE (149.00±87.54 cm3vs. 188.17±125.72 cm3, P=0.014);there was no significant difference between the mean PTVFB and PTVEI+EE (276.68±146.41 cm3vs. 253.66±117.35 cm3, P=0.080). DI of CTVFB to CTVEI+EE, PTVFB to PTVEI+EE, CTVEI+EE to CTVFB, and PTVEI+EE to PTVFB were (99.83±0.09)%,(84.55±8.45)%,(80.83±12.31)%, and (99.78±0.08)%, respectively. MI of CTVEI+EE to CTVFB and PTVEI+EE to PTVFB were 0.83±0.07 and 0.87±0.03, respectively. The central displacements of CTVEI+EE from CTVFB in x, y, and z axes were 0.55±1.07 cm, 0.76±3.02 cm, and -0.26±1.98 cm, respectively (P=0.432, 0.971, 0.587). Conclusions In the treatment of liver cancer, the target volume delineation and image fusion using 3DCT images in EIH and EEH phases may avoid target omission due to respiratory movement, making it possible to increase radiation dose to target volume and improve the efficacy of radiotherapy.
Hong Chaoshan,Zhu Xiaodong,Qu Song et al. Effect of independent breath-holding technology on target geometry in radiotherapy for liver cancer[J]. Chinese Journal of Radiation Oncology, 2017, 26(2): 171-177.
[1] Shimizu S,Shirato H,Aoyama H,et al. High-speed magnetic resonance imaging for four-dimensional treatment planning of conformal radiotherapy of moving body tumors[J].Int J Radiat Oncol Biol Phys,2000,48(2):471-474.DOI:10.1016/S0360-3016(00)00624-6. [2] Rietzel E,Chen GTY,Choi NC,et al. Four-dimensional image-based treatment planning:target volume segmentation and dose calculation in the presence of respiratory motion[J].Int J Radiat Oncol Biol Phys,2005,61(5):1535-1550.DOI:10.1016/j.ijrobp.2004.11.037. [3] 于甬华,赵月环,罗立民,等.呼吸运动对肝部占位性病灶位置的影响及数学模型的建立[J].中华放射肿瘤学杂志,2002,11(4):245-247.DOI:10.3760/j.issn:1004-4221.2002.04.009. Yu YH,Zhao YH,Luo LM,et al. Establishment of a mathematical model for the influence of respiratory movement upon the position of an intrahepatic space-occupying lesion[J].Chin J Radiat Oncol,2002,11(4):245-247.DOI:10.3760/j.issn:1004-4221.2002.04.009. [4] Kim YS,Park SH,Ahn SD,et al. Differences in abdominal organ movement between supine and prone positions measured using four-dimensional computed tomography[J].Radiother Oncol,2007,85(3):424-428.DOI:10.1016/j.radonc.2007.10.031. [5] Rietzel E,Liu AK,Doppke KP,et al. Design of 4D treatment planning target volumes[J].Int J Radiat Oncol Biol Phys,2006,66(1):287-295.DOI:10.1016/j.ijrobp.2006.05.024. [6] 习勉,刘孟忠,李巧巧,等.基于4DCT的腹部器官呼吸运动分析[J].癌症,2009,28(9):989-993.DOI:10.3321/j.issn:1000-467X.2009.09.018. Xi M,Liu MZ,Li QQ,et al. Analysis of abdominal organ motion using four-dimensional CT[J].Chin J Cancer,2009,28(9):989-993.DOI:10.3321/j.issn:1000-467X.2009.09.018. [7] Shimizu S,Shirato H,Xo B,et al. Three-dimensional movement of a liver tumor detected by high-speed magnetic resonance imaging[J].Radiother Oncol,1999,50(3):367-370.DOI:10.1016/S0167-8140(98)00140-6. [8] 苏建新,吴裕起,黄峻,等.真空袋体位固定技术临床应用价值的研究[J].中华放射肿瘤学杂志,2005,14(2):125-126.DOI:10.3760/j.issn:1004-4221.2005.02.013. Su JX,Wu YQ,Huang J,et al. Clinical application of vacuum bag immobilization of the trunk in malignant tumor patients[J].Chin J Radiat Oncol,2005,14(2):125-126.DOI:10.3760/j.issn:1004-4221.2005.02.013. [9] Hof H,Rhein B,Haering P,et al.4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours:comparison with a conventional technique using individual margins[J].Radiother Oncol,2009,93(3):419-423.DOI:10.1016/j.radonc.2009.08.040. [10] Ezhil M,Vedam S,Balter P,et al. Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography[J].Radiat Oncol,2009,4:4.DOI:10.1186/1748-717X-4-4. [11] Keall PJ,Mageras GS,Balter JM,et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76[J].Med Phys,2006,33(10):3874-3900.DOI:10.1118/1.2349696. [12] Simon L,Giraud P,Servois V,et al. Comparative study and clinical implementation of two breathing-adapted radiotherapy techniques:dosimetric benefits for lung cancer treatment[J].Cancer Radiother,2006,10(6-7):370-376. [13] Rietzel JM,Ten Haken RK,Lawrence TS,et al. Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing[J].Int J Radiat Oncol Biol Phys,1996,36(1):167-174.DOI:10.1016/S0360-3016(96)00275-1. [14] 邢军,李建彬,张英杰,等.四维CT中三种方法勾画原发性肝癌内大体靶体积的比较研究[J].中华肿瘤杂志,2012,34(2):122-128.DOI:10.3760/cma.j.issn.0253-3766.2012.02.009. Xing J,Li JB,Zhang YJ,et al. Comparison of three methods to delineate internal gross target volume of the primary hepatocarcinoma based on four-dimensional CT simulation images[J].Chin J Oncol,2012,34(2):122-128.DOI:10.3760/cma.j.issn.0253-3766.2012.02.009. [15] 巩贯忠,尹勇,陈进琥,等.基于四维CT和ABC辅助下三维CT确定肝癌内靶区对照研究[J].中华放射肿瘤学杂志,2011,20(6):517-520.DOI:10.3760/cma.j.issn.1004-4221.2011.06.020. Gong GZ,Yin Y,Chen JH,et al. The individual internal gross target volume for hepatocellular carcinoma:four-dimensional CT vs. three-dimensional CT associated with active breathing control[J].Chin J Radiat Oncol,2011,20(6):517-520.DOI:10.3760/cma.j.issn.1004-4221.2011.06.020. [16] Hughes S,McClelland J,Chandler A,et al. A comparison of internal target volume definition by limited four-dimensional computed tomography,the addition of patient-specific margins,or the addition of generic margins when planning radical radiotherapy for lymph node-positive non-small cell lung cancer[J].Clin Oncol,2008,20(4):293-300.DOI:10.1016/j.clon.2007.12.004. [17] Onishi H,Kuriyama K,Komiyama T,et al. A new irradiation system for lung cancer combining linear accelerator,computed tomography,patient self-breath-holding,and patient-directed beam-control without respiratory monitoring devices[J].Int J Radiat Oncol Biol Phys,2003,56(1):14-20.DOI:10.1016/S0360-3016(02)04414-0. [18] Cover KS,Lagerwaard FJ,Senan S.Color intensity projections:a rapid approach for evaluating four-dimensional CT scans in treatment planning[J].Int J Radiat Oncol Biol Phys,2006,64(3):954-961.DOI:10.1016/j.ijrobp.2005.10.006. [19] Dawson LA,Ten Haken RK.Partial volume tolerance of the liver to radiation[J].Semin Radiat Oncol,2005,15(4):279-283.DOI:10.1016/j.semradonc.2005.04.005. [20] Rosenzweig KE,Hanley J,Mah D,et al. The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer[J].Int J Radiat Oncol Biol Phys,2000,48(1):81-87.DOI:10.1016/S0360-3016(00)00583-6.