Impact of movement frequency on gross tumor volume of moving tumors based on three-and four-dimensional CT scans
Shang Dongping,Xing Jianhong,Zhang Qiang,Yin Yong
Department of Radiation Oncology,Shandong Cancer Hospital,Ji’nan 250117,China (Shang DP,Zhang Q,Yin Y);Department of Obstetrics and Gynecology,Affiliated Hospital of Shandong University of Traditional Chinese Medicine,Ji’nan 250011,China (Ximg JH)
摘要目的 探讨不同运动频率下基于3DCT和4DCT扫描所构建的运动肿瘤体积和中心点坐标位置差异。方法 利用Modus公司呼吸运动平台和8个不同形态和体积模体模拟肺部肿瘤运动,在10、15、20 次/min运动频率下分别行3DCT和4DCT扫描,依次勾画3种运动频率下GTV10、GTV15、GTV20和IGTV10、IGTV15、IGTV20并得到中心点坐标位置,对GTV10、GTV15、GTV20、IGTV10、IGTV-15、IGTV20、中心点坐标位置值行Friedman检验。结果 GTV10、GTV15、GTV20分别为(12.41±14.26)、(10.38±11.18)、(12.50±15.23) cm3(P=0.687),x轴位置值分别为(-8.2±96.2)、(-8.6±96.1)、(-8.6±95.7) mm (P=0.968),y轴为(108.2±25.0)、(110.4±22.5)、(109.0±24.2) mm (P=0.028),z轴为(65.2±13.7)、(65.4±13.4)、(65.4±13.2) mm (P=0.902)。3种运动频率下IGTV分别为(17.78±19.42)、(17.43±19.56)、(17.44±18.80) cm3(P=0.417),x轴位置值分别为(-7.7±95.9)、(-7.9±95.6)、(-7.9±95.1) mm (P=0.325),y轴为(109.4±24.5)、(109.6±24.1)、(109.2±24.3) mm (P=0.525),z轴为(65.5±13.3)、(65.6±13.4)、(65.5±13.3) mm (P=0.093)。结论 胸部肿瘤模拟定位时,呼吸运动频率对4DCT扫描靶区构建无明显影响;不同呼吸频率下所构建的3D靶体积大小差别不明显,但对靶区中心点y轴位置影响明显。
Abstract:Objective To investigate the impact of movement frequency on gross tumor volume (GTV) of moving tumors and coordinate position of the central point based on three-and four-dimensional CT scans. Methods The respiratory motion platform from Modus and 8 phantoms with different shapes and volumes were used to simulate the movement of lung tumors. Three-and four-dimensional CT scans were performed at movement frequencies of 10, 15, and 20 times/min. GTV (GTV10, GTV15, and GTV20) and IGTV (IGTV10, IGTV15, and IGTV20) were delineated, and the coordinate position of the central point was obtained. The Friedman test was performed for GTV10, GTV15, GTV20, IGTV10, IGTV15, IGTV20, and the coordinate position of the central point. Results GTV10, GTV15, and GTV20 at the three movement frequencies were 12.41±14.26 cm3, 10.38±11.18 cm3, and 12.50±15.23 cm3, respectively (P=0.687), and the positional values were -8.2±96.2 mm, -8.6±96.1 mm, and -8.6±95.7 mm in x-axis (P=0.968), 108.2±25.0 mm, 110.4±22.5 mm, and 109.0±24.2 mm in y-axis (P=0.028), and 65.2±13.7 mm, 65.4±13.4 mm, and 65.4±13.2 mm in z-axis (P=0.902). IGTV10, IGTV15, and IGTV20 at the three movement frequencies were 17.78±19.42 cm3, 17.43±19.56 cm3, and 17.44±18.80 cm3, respectively (P=0.417), and the positional values were -7.7±95.9 mm, -7.9±95.6 mm,and -7.9±95.1 mm in x-axis (P=0.325), 109.4±24.5 mm, 109.6±24.1 mm, and 109.2±24.3 mm in y-axis (P=0.525), and 65.5±13.3 mm, 65.6±13.4 mm, and 65.5±13.3 mm in z-axis (P=0.093). Conclusions During simulated positioning of thoracic tumors, respiratory movement frequency has no significant impact on target volume established by four-dimensional CT scan. There are no significant differences in three-dimensional target volume established at different respiratory frequencies, but respiratory frequency has a significant impact on the position of the central point of the target volume in y-axis.
Shang Dongping,Xing Jianhong,Zhang Qiang et al. Impact of movement frequency on gross tumor volume of moving tumors based on three-and four-dimensional CT scans[J]. Chinese Journal of Radiation Oncology, 2016, 25(9): 994-998.
[1] 舒留洋,陆合明,陈华生,等.四维CT联合呼吸门控技术在非小细胞肺癌放疗中的剂量学研究[J].中华放射肿瘤学杂志,2014,23(2):97-98.DOI:10.3760/cma.j.issn.1004-4221.2014.02.004. Shu LY,Lu HM,Chen HSH,et al. Dosimetric study of four-dimensional CT combined with respiratory gating in radiotherapy in non-small cell lung cancer[J].Chin J Radiat Oncol,2014,23(2):97-98.DOI:10.3760/cma.j.issn.1004-4221.2014.02.004. [2] Holger Hof,Bernhard Rhein,Peter Haering,et al.4D-CT-based target volume definition in stereotactic radiotherapy of lung tumors:Comparison with a conventional technique using individual margins[J].2009.93(3):419-423.DOI:10.1016/j.radonc.2009.08.040. [3] Weiss E,Wijesooriya K,Dill SV,et al. Tumor and normal tissue motion in the thorax during respiration:analysis of volumetric and positional variations using 4DCT.Int J Radiat Oncol Biol Phys,2007,67(1):296-307.DOI:10.1016/j.ijrobp.2006.09.009. [4] 李奉祥,李建彬,邵倩,等.基于三种CT图像勾画的非小细胞肺癌靶体积比较研究[J].中华放射肿瘤学杂志,2013,22(4):286-290.DOI:10.3760/cma.j.issn.1004-4221.2013.04.007. Li FX,Li JB,Shao Q,et al. A comparative study of target volumes based on three CT images in non-small cell lung cancer[J].Chijn J Radiat Oncol,2013,22(4):286-290.DOI:10.3760/cma.j.issn.1004-4221.2013.04.007. [5] 尚东平,李明焕,李建彬,等.四维CT技术确定肺内孤立性病灶靶体积应用[J].中华放射肿瘤学杂志,2011,20(5):417-419.DOI:10.3760/cma.j.issn.1004-4221.2011.05.016. Shang DP,Li MH,Li JB,et al. The application of four-dimensional CT technique in determining the planning target volume of the solitary pulmonary lesion[J].Chin J Radiat Oncol,2011,20(5):417-419.DOI:10.3760/cma.j.issn.1004-4221.2011.05.016. [6] Cheung P C,Sixel K E,Tirona R,et al. Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC)[J].Int J Radiat Oncol Biol Phys,2003,57(5):1437-1442.DOI:10.1016/j.ijrobp.2003.08.006. [7] Wang L,Hayes S,Paskalev K,et al.dosimetric comparison of stereotactic body radiotherapy using 4D CT and multiphase CT images for treatment planning of lung cancer:eevaluation of the impact on daily dose coverage[J].Radiother Oncol,2009,91(3):314-324.DOI:10.1016/j.radonc.2008.11.018. [8] 王彦,包勇,张黎,等.基于四维CT影像肺内肿瘤运动度的测量与分析[J].中华放射肿瘤学杂志,2010,19(1):40-43.DOI:10.3760/cma.j.issn.1004-4221.2010.01.014. Wang Y,Bao Y,Zhang L,et al. Four-dimensional computed tomography based assessment and analysis of lung tumor motion during free breathing respiration[J].Chin J Radiat Oncol,2010,19(1):40-43.DOI:10.3760/cma.j.issn.1004-4221.2010.01.014. [9] 张英杰,李建彬,田世禹,等.基于四维CT对肺原发灶位移和体积变化相关性研究[J].中华放射肿瘤学杂志,2011,20(6):513-516.DOI:10.3760/cma.j.issn.1004-4221.2011.06.019. Zhang YJ,Li JB,Tian SHY,et al. A correlation study on position and volume variation of primary lung cancer during respiration by four-dimensional CT[J].Chin J Radiat Oncol,2011,20(6):513-516.DOI:10.3760/cma.j.issn.1004-4221.2011.06.019. [10] 刘忠翔,张书旭,余辉,等.基于Cine模式扫描实现动态靶区精确勾画的实验研究[J].肿瘤基础与临床,2010,21(3):241-243. Liu ZHX,Zhang SHX,Yu H,et al. Experimental study of dynamic target area based on cine mode scan[J].J Basic Clin Oncol,2010,21(3):241-243. [11] 尚东平,王玮,李建彬,等.肺内孤立灶大体肿瘤体积CT不同扫描方式比较[J].中华放射肿瘤学杂志,2012,21(5):436-438.DOI:10.3760/cma.j.issn.1004-4221.2012.05.013. Shang DP,Wang W,Li JB,et al. A comparison of the different CT scanning modes on the GTV delineation of the solitary pulmonary lesion[J].Chin J Radiat Oncol,2012,21(5):436-438.DOI:10.3760/cma.j.issn.1004-4221.2012.05.013. [12] Wang N,Patyal B,Ghebremahin A,et al. Evaluation and comparison of new 4DCT based strategies for proton treatment planning for lung tumors[J].Radiat Oncol,2013,8(1):73.DOI:10.1186/1748-717X-8-73. [13] 李奉祥,李建彬,张英杰,等.基于3D-CT与4D-CT定义非小细胞肺癌计划靶区的比较[J].中华放射医学与防护杂志,2011,31(2):200-204.DOI:10.3760./cma.j.issn.0254-5098.2011.02.002. Li FX,Li JB,Zhang YJ,et al. Comparison between 3D-CT and 4D-CT in the target area of non small cell lung cancer[J].Chin J Radiol Med Protect,2011,31(2):200-204.DOI:10.3760./cma.j.issn.0254-5098.2011.02.002. [14] 王艳阳,折虹,傅小龙,等.应用千伏锥形束CT个体化确定肺癌放疗内在靶体积的研究[J].肿瘤防治研究,2011,38(4):437-439.DOI:10.3971/j.issn.1000-8578.2011.04.019. Wang YY,Zhe H,Fu XL,et al. Determination of intrinsic target volume in radiotherapy of lung cancer by using the individual of the kV cone beam CT[J].Cancer Res Prevent Treat,2011,38(4):437-439.DOI:10.3971/j.issn.1000-8578.2011.04.019. [15] Vedam SS,Keall P J,Kini VR,et al. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal[J].Phys Med Biol,2003,48(1):45-62. [16] 鞠瀟,周宗玫.四维CT在肺癌放疗中的临床应用现状[J].中华放射肿瘤学杂志,2011,20(6):531-534.DOI:10.3760/cma.j.issn.1004-4221.2011.06.025. Ju X,Zhou ZM.The clinical application of four dimensional CT in radiotherapy of lung cancer[J].Chin J Radiat Oncol,2011,20(6):531-534.DOI:10.3760/cma.j.issn.1004-4221.2011.06.025. [17] Yu ZH,Lin SH,Balter P,et al. A comparison of tumor motion characteristics between early stage and locally advanced stage lung cancers[J].Radiother Oncol,2012,104(1):33-38.DOI:10.1016/j.radonc.2012.04.010.