·物理·生物·技术·
最新目录 |
下期目录 |
过刊浏览 |
高级检索
[an error occurred while processing this directive]|[an error occurred while processing this directive]
肺癌伴肺不张者放疗前MRI与CT模拟定位比较研究
赵丹,余荣,胡俏俏,张健,吴昊,于会明,耿建昊,齐丽萍,朱广迎
100142 北京,恶性肿瘤发病机制及转化研究教育部重点实验室北京大学肿瘤医院暨北京市肿瘤防治研究所放疗科(赵丹、余荣、胡俏俏、张健、吴昊、于会明、耿建昊、朱广迎),影像科(齐丽萍)
Using MRI simulation in radiotherapy of lung cancer with post-obstructive lobar collapse:a preliminary study
Zhao Dan,Yu Rong,Hu Qiaoqiao,ZHang Jian,Wu Hao,Yu Huiming,Geng Jianhao,Qi Liping, Zhu Guangying
Department of Radiation Oncology(Zhao D,Yu R,Hu QQ,Zhang J,Wu H,Yu HM,Geng JH,Zhu GY),Deparment of Imaging(Q ,LP),Peking University School of Oncology,Beijing Cancer Hospital & Institute,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education),Beijing 100142,ChinaZhu Guangying,Email:zgypu163@163.com
摘要 目的 探讨MRI定位在合并阻塞性肺不张(POLC)肺癌患者中进行靶区勾画的可行性及优势。方法 对14例合并POLC肺癌患者同时行CT、MRI定位,分别采集CT、T1 WI、 T2 WI、DWI图像并测量癌肿与POLC在T2 WI、DWI图像上的比信噪比(CNRs)。将CT、MRI定位图像在TPS中进行融合,分别在CT、MRI上进行靶区勾画,制定放疗计划。PlanCT 、PlanMRI 均以CT为基础实现剂量计算,采用相同射野数目及角度。系统自动计算GTV,比较2个计划的DVH。配对t检验差异。结果 T2 WI可以显示12/14癌肿与POLC的界限,6/6中肿块与POLC的分界均可被DWI显示。GTVMRI 为(149.317±229.670) cm3 ,GTVCT 为(178.073±236.604) cm3 (P=0.000)。DWI图像CNRs为77.295±49.273,T2 WI的为12.942±5.553(P=0.027)。DVH比较显示在靶区适形度及均匀性无差异的前提下,PlanMRI 比PlanCT 患侧肺平均剂量低(P=0.002),健侧肺平均剂量相近(P=0.052),总肺平均剂量、食管平均剂量、脊髓最大剂量均低(P=0.009、0.038、0.038),患侧肺V5 、V10 和心脏V25 均低(P=0.010、0.031、0.044)。
关键词 :
磁共振成像定位 ,
肺肿瘤 ,
阻塞性肺不张   ,
  ,
  ,
基金项目:国家自然科学基金(30870738 ,
81472814)
Abstract :Objective To study the potential of MRI simulation in lung cancer patients with post-obstructive lobar collapse (POLC). Methods 14 patients with POLC were enrolled. Before radiotherapy,two sets of simulating images were obtained for each patient using CT and MRI with T1 /T2 -weighted and diffuse-weighted images (T1 W/T2 WI/DWI). Simulating MRI were fused with corresponding simulating CT for dose calculation. Contrast-to-noise-ratios (CNRs) of tumor and POLC on T2 WI and DWI were measured and calculated. The GTV and OARs were delineated separately by radiation oncologists both on simulating CT and MRI. PlanCT and PlanMRI /CT were carried out on CT sets with same beam number and direction. Dose distributions of OARs were compared on the basis of DVH. Results 12 out of 14 cases were distinguishable by T2 WI and all the 6 cases could be figured out by DWI. The mean volume of GTVMRI was significantly smaller than GTVCT (149.317±229.670 cm3 vs. 178.073±236.604 cm3 ,P=0.000).The mean CNR of DWI was much higher than T2 WI (77.295±49.273 vs. 12.942±5.553,P=0.027).The DVH comparison showed OARs of PlanMRI got less exposure compared to those of PlanCT . with no significant differences in HI and CI (The mean dose of lung with cancer was lower (P=0.002),and withno cancer similar (P=0.052). Total lung mean dose was lower (P=0.009),and with esophagus lower (P=0.038). The maximal dose of spinal cord was lower (P=0.038). The V5 ,V10 of lung and V25 of heart were lower (P=0.010,0.031,0.044). Conclusions MRI simulation with coregistered simulating CT is more competent than CT simulation alone,in identifying and defining the borderlines of tumor masses and reducing the exposure of OARs.
Key words :
Magnetic resonance imaging simulation
Lung neoplasms
Post-obstructive lobar collapse  
 
 
Fund program:National Natural Science Fund of China (30870738,81472814)
收稿日期: 2015-04-26
基金资助: 国家自然科学基金(30870738,81472814)
通讯作者:
朱广迎,Email:zgypu163@163.com
[1]Grills IS,Yan D,Martinez AA,et al. Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer:a comparison of intensity-modulated radiation therapy (IMRT),3D conformal radiation,and elective nodal irradiation[J].Int J Radiat Oncol Biol Phys,2003,57(3):875-890.DOI:10.1016/S0360-3016(03)00743-0. [2]任雯廷,陈辛元,戴建荣.磁共振放疗模拟定位技术应用现状与问题[J].中华放射肿瘤学杂志,2015,24(1):93-96.DOI:10.3760/cma.j.issn.1004-4221.2015.01.025. Ren WT,Chen XY,Dai JR.Application status and problems of MRI radiotherapy Simulator technology[J].Chin J Radiat Oncol,2015,24(1):93-96.DOI:10.3760/cma.j.issn.1004-4221.2015.01.025. [3]Qi LP,Zhang XP,Tang L,et al. Using diffusion-weighted MR imaging for tumor detection in the collapsed lung:a preliminary study[J].Eur Radiol,2009,19(2):333-341.DOI:10.1007/s00330-008-1134-3. [4]ICRU. ICRU Report 62:Prescribing,recording and reporting photon beam therapy (Supplement to ICRU report 50)[R].Bethesda,MD:International Commission on Radiation Units and Measurements,1999:125-210. [5]Ettinger DS,Wood DE,Akerley W,et al. NCCN clinical practice guidelines in oncology non-small cell lung cancer (version 3.2015),principles of radiation therapy (7 of 9)[EB/OL].Fort Washington:NCCN,2015[2015-06-11].http://www.cjcpt.org/files/2015/03-06/2015-NCCN/2015%20NCCN-NSCLC-V3.pdf. [6]ICRU. ICRU Report 83:prescribing,recording,and reporting photon-beam intensity modulated radiation therapy (IMRT)[J].J ICRU,2010,10(1):NP.DOI:10.1093/jicru/ndq002. [7]Kns T,Kristensen I,Nilsson P.Volumetric and dosimetric evaluation of radiation treatment plans:radiation conformity index[J].Int J Radiat Oncol Biol Phys,1998,42(5):1169-1176.DOI:10.1016/S0360-3016(98)00239-9. [8]Molina PL,Hiken JN,Glazer HS.Imaging evaluation of obstructive atelectasis[J].J Thorac Imaging,1996,11(3):176-186. [9]Onitsuka H,Tsukuda M,Araki A,et al. Differentiation of central lung tumor from postobstructive lobar collapse by rapid sequence computed tomography[J].J Thorac Imaging,1991,6(2):28-31. [10]Ebert MA,Kenny J,Greer PB.Experience converting an RT department to full CT simulation:technical issues identified during commissioning of a wide-bore scanner[J].J Med Imaging Radiat Oncol,2009,53(3):325-330.DOI:10.1111/j.1754-9485.2009.02075.x. [11]Wu V,Podgorsak MB,Tran TA,et al. Dosimetric impact of image artifact from a wide-bore CT scanner in radiotherapy treatment planning[J].Med Phys,2011,38(7):4451-4463.DOI:10.1118/1.3604150. [12]Ford EC,Herman J,Yorke E,et al.18 F-FDG PET/CT for image-guided and intensity-modulated radiotherapy[J].J Nucl Med,2009,50(10):1655-1665.DOI:10.2967/jnumed.108.055780. [13]Nestle U,Kremp S,Schaefer-Schuler A,et al. Comparison of different methods for delineation of 18 F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer[J].J Nucl Med,2005,46(8):1342-1348. [14]Greco C,Rosenzweig K,Cascini GL,et al. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC)[J].Lung Cancer,2007,57(2):125-134.DOI:10.1016/j.lungcan.2007.03.020. [15]Lutterbey G,Gieseke J,Von Falkenhausen M,et al. Lung MRI at 3.0 T:a comparison of helical CT and high-field MRI in the detection of diffuse lung disease[J].Eur Radiol,2005,15(2):324-328.DOI:10.1007/s00330-004-2548-1. [16]Gjurchinov D,Stojanovska-Nojkova J,Grunevski M,et al. Radiological and"imaging" methods in TNM classification of non-small-cell lung cancer[J].Prilozi,2007,28(1):155-167. [17]Sommer G,Wiese M,Winter L,et al. Preoperative staging of non-small-cell lung cancer:comparison of whole-body diffusion-weighted magnetic resonance imaging and 18 F-fluorodeoxyglucose-positron emission tomography/computed tomography[J].Eur Radiol,2012,22(12):2859-2867.DOI:10.1007/s00330-012-2542-y. [18]Schwenzer NF,Schraml C,Müller M,et al. Pulmonary lesion assessment:comparison of whole-body hybrid MR/PET and PET/CT imaging—pilot study[J].Radiology,2012,264(2):551-558.DOI:10.1148/radiol.12111942. [19]Ohno Y,Sugimura K,Hatabu H.MR imaging of lung cancer[J].Eur J Radiol,2002,44(3):172-181.DOI:10.1016/S0720-048X (02)00267-X. [20]Biederer J,Beer M,Hirsch W,et al. MRI of the lung (2/3).Why … when…how?[J].Insights Imaging,2012,3(4):355-371.DOI:10.1007/s13244-011-0146-8. [21]Bourgouin PM,McLoud TC,Fitzgibbon JF,et al. Differentiation of bronchogenic carcinoma from postobstructive pneumonitis by magnetic resonance imaging:histopathologic correlation[J].J Thorac Imaging,1991,6(2):22-27. [22]Tobler J,Levitt RG,Glazer HS,et al. Differentiation of proximal bronchogenic carcinoma from postobstructive lobar collapse by magnetic resonance imaging. Comparison with computed tomography[J].Invest Radiol,1987,22(7):538-543. [23]Baysal T,Mutlu DY,Yologlu S.Diffusion-weighted magnetic resonance imaging in differentiation of postobstructive consolidation from central lung carcinoma[J].Magn Reson Imaging,2009,27(10):1447-1454.DOI:10.1016/j.mri.2009.05.024. [24]Yang RM,Li L,Wei XH,et al. Differentiation of central lung cancer from atelectasis:comparison of diffusion-weighted MRI with PET/CT[J].PLoS One,2013,8(4):e60279.DOI:10.1371/journal.pone.0060279. [25]Khoo VS,Dearnaley DP,Finnigan DJ,et al. Magnetic resonance imaging (MRI):considerations and applications in radiotherapy treatment planning[J].Radiother Oncol,1997,42(1):1-15.DOI:10.1016/S0167-8140(96)01866-X. [26]Krempien RC,Schubert K,Zierhut D,et al. Open low-field magnetic resonance imaging in radiation therapy treatment planning[J].Int J Radiat Oncol Biol Phys,2002,53(5):1350-1360.DOI:10.1016/S0360-3016(02)02886-9. [27]Ireland RH,Bragg CM,McJury M,et al. Feasibility of image registration and intensity-modulated radiotherapy planning with hyperpolarized helium-3 magnetic resonance imaging for non-small-cell lung cancer[J].Int J Radiat Oncol Biol Phys,2007,68(1):273-281.DOI:10.1016/j.ijrobp.2006.12.068. [28]Bates EL,Bragg CM,Wild JM,et al. Functional image-based radiotherapy planning for non-small cell lung cancer:a simulation study[J].Radiother Oncol,2009,93(1):32-36.DOI:10.1016/j.radonc.2009.05.018.