Application and research progress on PET‐CT in radiotherapy and follow‐up for glioma
Zhang Shuang1,2, Yin Jun2, Yao Yutang3, Wang Shaolong4
1Chengdu Medical College, Chengdu 610500, China; 2Radiation Tumor Complex Ward,Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China,Chengdu 610041,China; 3Department of Nuclear Medicine, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China,Chengdu 610041,China; 4Department of Oncology, First Affiliated Hospital of Chengdu Medical College, Chengdu 610599, China
Abstract:Glioma is the most common primary intracranial central nervous system tumor, and postoperative radiotherapy is an important treatment for glioma. At present, computed tomography (CT) and magnetic resonance imaging (MRI) are widely applied in the delineation of radiotherapy targets for glioma. However, there are still some deficiencies in evaluating tumor scope, recurrence, radiation necrosis and prognosis, etc. Positron emission tomography (PET)/computed tomography (PET‐CT) combines the molecular images of PET with the anatomical images of CT, which plays an important role in the diagnosis and differential diagnosis of glioma. With the popularization and application of multimodal imaging technology in radiotherapy, PET‐CT molecular imaging, as an important supplement, contributes to the delineation of glioma target volume and the development of accurate radiotherapy, and brings benefits to the prognosis and follow‐up of glioma patients. In this article, the application and research progress on PET‐CT in the diagnosis, treatment and follow‐up for glioma were reviewed.
Zhang Shuang,Yin Jun,Yao Yutang et al. Application and research progress on PET‐CT in radiotherapy and follow‐up for glioma[J]. Chinese Journal of Radiation Oncology, 2023, 32(3): 265-269.
[1] Miwa K, Matsuo M, Ogawa S, et al.Hypofractionated high-dose irradiation with positron emission tomography data for the treatment of glioblastoma multiforme[J]. Biomed Res Int, 2014,2014:407026. DOI: 10.1155/2014/407026. [2] Louis DN, Perry A, Wesseling P, et al.The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro Oncol, 2021,23(8):1231-1251. DOI: 10.1093/neuonc/noab106. [3] «中国中枢神经系统胶质瘤诊断和治疗指南»编写组. 中国中枢神经系统胶质瘤诊断与治疗指南(2015)[J] . 中华医学杂志, 2016, 96(7) : 485-509. DOI: 10.3760/cma.j.issn.0376-2491.2016.07.003. Compilation group of China guidelines for diagnosis and treatment of glioma in central nervous system. China guidelines for diagnosis and treatment of glioma in central nervous system (2015)[J]. Nat Med J China, 2016, 96(7) : 485-509. DOI: 10.3760/cma.j.issn.0376-2491.2016.07.003. [4] Dhermain F.Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches[J]. Chin J Cancer, 2014,33(1):16-24. DOI: 10.5732/cjc.013.10217. [5] Glaudemans AW, Enting RH, Heesters MA, et al.Value of 11C-methionine PET in imaging brain tumours and metastases[J]. Eur J Nucl Med Mol Imaging, 2013,40(4):615-635. DOI: 10.1007/s00259-012-2295-5. [6] He Q, Zhang LQ, Zhang B, et al.Diagnostic accuracy of 13N-ammonia PET, 11C-methionine PET and 18F-fluorodeoxyglucose PET: a comparative study in patients with suspected cerebral glioma[J]. BMC Cancer, 2019,19(1):332. DOI: 10.1186/s12885-019-5560-1. [7] Martínez-Amador N, Jiménez-Bonilla J, Martínez-Rodríguez I, et al.Value of the visual and semiquantitative analysis of carbon-11-methionine PET/CT in brain tumors' recurrence versus post-therapeutic changes[J]. Nucl Med Commun, 2017,38(12):1125-1132. DOI: 10.1097/MNM.0000000000000754. [8] Juhász C, Dwivedi S, Kamson DO, et al.Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors[J]. Mol Imaging, 2014,13. DOI: 10.2310/7290.2014.00015. [9] Jeong S Y, Lim S M.Comparison of 3'-deoxy-3'-[18F]fluorothymidine PET and O-(2-[18F]fluoroethyl)-L-tyrosine PET in patients with newly diagnosed glioma[J]. Nucl Med Biol, 2012, 39(7): 977-981. DOI: 10.1016/j.nucmedbio.2012.02.009. [10] Fueger BJ, Czernin J, Cloughesy T, et al.Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas[J]. J Nucl Med, 2010,51(10):1532-1538. DOI: 10.2967/jnumed.110.078592. [11] Kratochwil C, Combs SE, Leotta K, et al.Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors[J]. Neuro Oncol, 2014,16(3):434-440. DOI: 10.1093/neuonc/not199. [12] McCarthy JB, El-Ashry D, Turley EA. Hyaluronan, cancer-associated fibroblasts and the tumor microenvironment in malignant progression[J]. Front Cell Dev Biol, 2018,6:48. DOI: 10.3389/fcell.2018.00048. [13] Busek P, Balaziova E, Matrasova I, et al.Fibroblast activation protein alpha is expressed by transformed and stromal cells and is associated with mesenchymal features in glioblastoma[J]. Tumour Biol, 2016,37(10):13961-13971. DOI: 10.1007/s13277-016-5274-9. [14] Röhrich M, Loktev A, Wefers AK, et al.IDH-wildtype glioblastomas and grade III/IV IDH-mutant gliomas show elevated tracer uptake in fibroblast activation protein-specific PET/CT[J]. Eur J Nucl Med Mol Imaging, 2019,46(12):2569-2580. DOI: 10.1007/s00259-019-04444-y. [15] Nojiri T, Nariai T, Aoyagi M, et al.Contributions of biological tumor parameters to the incorporation rate of L-[methyl-(11)C] methionine into astrocytomas and oligodendrogliomas[J]. J Neurooncol, 2009,93(2):233-241. DOI: 10.1007/s11060-008-9767-2. [16] Lucas JT, Serrano N, Kim H, et al.11C-Methionine positron emission tomography delineates non-contrast enhancing tumor regions at high risk for recurrence in pediatric high-grade glioma[J]. J Neurooncol, 2017,132(1):163-170. DOI: 10.1007/s11060-016-2354-z. [17] Grosu AL, Weber WA, Riedel E, et al.L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2005,63(1):64-74. DOI: 10.1016/j.ijrobp.2005.01.045. [18] Matsuo M, Miwa K, Tanaka O, et al.Impact of [11C]methionine positron emission tomography for target definition of glioblastoma multiforme in radiation therapy planning[J]. Int J Radiat Oncol Biol Phys, 2012,82(1):83-89. DOI: 10.1016/j.ijrobp.2010.09.020. [19] Schinkelshoek M, Lopci E, Clerici E, et al.Impact of 11C-methionine positron emission tomography/computed tomography on radiation therapy planning and prognosis in patients with primary brain tumors[J]. Tumori, 2014,100(6):636-644. DOI: 10.1700/1778.19268. [20] Dissaux G, Dissaux B, Kabbaj OE, et al.Radiotherapy target volume definition in newly diagnosed high grade glioma using 18F-FET PET imaging and multiparametric perfusion MRI: a prospective study (IMAGG)[J]. Radiother Oncol, 2020,150:164-171. DOI: 10.1016/j.radonc.2020.06.025. [21] Munck Af Rosenschold P, Costa J, Engelholm SA, et al. Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma[J]. Neuro Oncol, 2015,17(5):757-763. DOI: 10.1093/neuonc/nou316. [22] Niyazi M, Geisler J, Siefert A, et al.FET-PET for malignant glioma treatment planning[J]. Radiother Oncol, 2011,99(1):44-48. DOI: 10.1016/j.radonc.2011.03.001. [23] Rieken S, Habermehl D, Giesel FL, et al.Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy[J]. Radiother Oncol, 2013,109(3):487-492. DOI: 10.1016/j.radonc.2013.06.043. [24] Li FM, Nie Q, Wang RM, et al.11C-CHO PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas[J]. Nucl Med Biol, 2012,39(3):437-442. DOI: 10.1016/j.nucmedbio. 2011.10.003. [25] Windisch P, Röhrich M, Regnery S, et al.Fibroblast activation protein (FAP) specific PET for advanced target volume delineation in glioblastoma[J]. Radiother Oncol, 2020,150:159-163. DOI: 10.1016/j.radonc.2020.06.040. [26] Kosztyla R, Chan EK, Hsu F, et al.High-grade glioma radiation therapy target volumes and patterns of failure obtained from magnetic resonance imaging and 18F-FDOPA positron emission tomography delineations from multiple observers[J]. Int J Radiat Oncol Biol Phys, 2013,87(5):1100-1106. DOI: 10.1016/j.ijrobp.2013.09.008. [27] Guckenberger M, Mayer M, Buttmann M, et al.Prolonged survival when temozolomide is added to accelerated radiotherapy for glioblastoma multiforme[J]. Strahlenther Onkol, 2011,187(9):548-554. DOI: 10.1007/s00066-011-2242-6. [28] Faustino AC, Viani GA, Hamamura AC.Patterns of recurrence and outcomes of glioblastoma multiforme treated with chemoradiation and adjuvant temozolomide[J]. Clinics (Sao Paulo), 2020,75:e1553. DOI: 10.6061/clinics/2020/e1553. [29] Douglas JG, Stelzer KJ, Mankoff DA, et al.[F-18]-fluorodeoxyglucose positron emission tomography for targeting radiation dose escalation for patients with glioblastoma multiforme: clinical outcomes and patterns of failure[J]. Int J Radiat Oncol Biol Phys, 2006,64(3):886-891. DOI: 10.1016/j.ijrobp.2005.08.013. [30] Piroth MD, Pinkawa M, Holy R, et al.Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas. Results of a prospective phase II study[J]. Strahlenther Onkol, 2012,188(4):334-339. DOI: 10.1007/s00066-011-0060-5. [31] Pafundi DH, Laack NN, Youland RS, et al.Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study[J]. Neuro Oncol, 2013,15(8):1058-1067. DOI: 10.1093/neuonc/not002. [32] Laack NN, Pafundi D, Anderson SK, et al.Initial results of a phase 2 trial of 18F-DOPA PET-guided dose-escalated radiation therapy for glioblastoma[J]. Int J Radiat Oncol Biol Phys, 2021,110(5):1383-1395. DOI: 10.1016/j.ijrobp.2021.03.032. [33] Okubo S, Zhen HN, Kawai N, et al.Correlation of L-methyl-11C-methionine (MET) uptake with L-type amino acid transporter 1 in human gliomas[J]. J Neurooncol, 2010,99(2):217-225. DOI: 10.1007/s11060-010-0117-9. [34] Kits A, Martin H, Sanchez-Crespo A, et al.Diagnostic accuracy of 11C-methionine PET in detecting neuropathologically confirmed recurrent brain tumor after radiation therapy[J]. Ann Nucl Med, 2018,32(2):132-141. DOI: 10.1007/s12149-017-1227-7. [35] Skvortsova TY, Brodskaya ZL, Gurchin AF. PET using 11C‐methionine in recognition of pseudoprogression in cerebral glioma after combined treatment[J]. Zh Vopr Neirokhir Im N N Burdenko, 2014, 78(4): 50‐58. [36] Takenaka S, Asano Y, Shinoda J, et al.Comparison of (11) C-methionine, (11) C-choline, and (18) F-fluorodeoxyglucose -PET for distinguishing glioma recurrence from radiation necrosis[J]. Neurol Med Chir (Tokyo), 2014,54(4):280-289. DOI: 10.2176/nmc.oa2013-0117.