Application of MR-guided radiotherapy for brain metastases
Zhao Jingjing, Bi Nan, Xiao Jianping
Department of Radiation Oncology, National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
Abstract:Radiotherapy (RT) is the primary local treatment modality for brain metastases, which are common secondary malignancies. Image-guidance system such as cone beam computed tomography (CBCT) may be not applicable to adaptive radiotherapy (ART), as well as hypofractionated RT in brain metastases, because it cannot clearly show the shrinkage and deformation of intracranial tumors, and the peritumoral edema changes in a real-time manner. Magnetic resonance (MR) image has high spatial resolution and soft tissue contrast and no radiation dose burden compared with CBCT. MR-guided adaptive radiotherapy (MR-gART) allows real-time tracking of deformation and position changes of the intracranial tumors, and enables online planning reconstruction during the treatment process. MR-gART could deliver high dose irradiation to the tumors while reducing the radiation dose of important organs at risk around, which contributes to achieving precision RT. In this work, the application of MR-gART in brain metastases was reviewed.
Zhao Jingjing,Bi Nan,Xiao Jianping. Application of MR-guided radiotherapy for brain metastases[J]. Chinese Journal of Radiation Oncology, 2023, 32(1): 60-64.
[1] Gould J.Breaking down the epidemiology of brain cancer[J]. Nature, 2018,561(7724):S40-S41. DOI: 10.1038/d41586-018-06704-7.
[2] Patchell RA, Tibbs PA, Walsh JW, et al.A randomized trial of surgery in the treatment of single metastases to the brain[J]. N Engl J Med, 1990,322(8):494-500. DOI: 10.1056/NEJM199002223220802.
[3] Patchell RA, Tibbs PA, Regine WF, et al.Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial[J]. JAMA, 1998,280(17):1485-1489. DOI: 10.1001/jama.280.17.1485.
[4] Zabel A, Debus J. Treatment of brain metastases from non-small-cell lung cancer (NSCLC): radiotherapy[J]. Lung Cancer, 2004,45 Suppl 2:S247-252. DOI: 10.1016/j.lungcan.2004.07.968.
[5] Rancoule C, Vallard A, Guy JB, et al.Brain metastases from non-small cell lung carcinoma: changing concepts for improving patients' outcome[J]. Crit Rev Oncol Hematol, 2017,116:32-37. DOI: 10.1016/j.critrevonc.2017.05.007.
[6] 石远凯, 孙燕, 于金明, 等. 中国肺癌脑转移诊治专家共识(2017年版)[J]. 中国肺癌杂志, 2017,20(1):1-13. DOI:10.3779/j.issn.1009-3419.2017.01.01.
Shi YK, Sun Y, Yu JM, et al.China experts consensus on the diagnosis and treatment of brain metastases of lung cancer (2017 version)[J]. Chinese Journal of Lung Cancer, 2017,20(1):1-13. DOI: 10.3779/j.issn.1009-3419.2017.01.01.
[7] Dawson LA, Sharpe MB.Image-guided radiotherapy: rationale, benefits, and limitations[J]. Lancet Oncol, 2006,7(10):848-858. DOI: 10.1016/S1470-2045(06)70904-4.
[8] Schellinger PD, Meinck HM, Thron A.Diagnostic accuracy of MRI compared to CCT in patients with brain metastases[J]. J Neurooncol, 1999,44(3):275-281. DOI: 10.1023/a:1006308808769.
[9] Mehta MP, Rodrigus P, Terhaard CH, et al.Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases[J]. J Clin Oncol, 2003,21(13):2529-2536. DOI: 10.1200/JCO.2003.12.122.
[10] Meyers CA, Smith JA, Bezjak A, et al.Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized phase III trial[J]. J Clin Oncol, 2004,22(1):157-165. DOI: 10.1200/JCO.2004.05.128.
[11] Garcia MA, Anwar M, Yu Y, et al.Brain metastasis growth on preradiosurgical magnetic resonance imaging[J]. Pract Radiat Oncol, 2018,8(6):e369-e376. DOI: 10.1016/j.prro.2018.06.004.
[12] Salkeld AL, Hau E, Nahar N, et al.Changes in brain metastasis during radiosurgical planning[J]. Int J Radiat Oncol Biol Phys, 2018,102(4):727-733. DOI: 10.1016/j.ijrobp.2018.06.021.
[13] Hessen E, Nijkamp J, Damen P, et al.Predicting and implications of target volume changes of brain metastases during fractionated stereotactic radiosurgery[J]. Radiother Oncol, 2020,142:175-179. DOI: 10.1016/j.radonc.2019.07.011.
[14] Aoyama H, Shirato H, Tago M, et al.Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial[J]. JAMA, 2006,295(21):2483-2491. DOI: 10.1001/jama.295.21.2483.
[15] Chang EL, Wefel JS, Hess KR, et al.Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial[J]. Lancet Oncol, 2009,10(11):1037-1044. DOI: 10.1016/S1470-2045(09)70263-3.
[16] Brown PD, Jaeckle K, Ballman KV, et al.Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial[J]. JAMA, 2016,316(4):401-409. DOI: 10.1001/jama.2016.9839.
[17] Yamamoto M, Serizawa T, Shuto T, et al.Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study[J]. Lancet Oncol, 2014,15(4):387-395. DOI: 10.1016/S1470-2045(14)70061-0.
[18] Lehrer EJ, Peterson JL, Zaorsky NG, et al.Single versus multifraction stereotactic radiosurgery for large brain metastases: an international meta-analysis of 24 trials[J]. Int J Radiat Oncol Biol Phys, 2019,103(3):618-630. DOI: 10.1016/j.ijrobp.2018.10.038.
[19] Gutschenritter T, Venur VA, Combs SE, et al.The judicious use of stereotactic radiosurgery and hypofractionated stereotactic radiotherapy in the management of large brain metastases[J]. Cancers (Basel), 2020,13(1):70. DOI: 10.3390/cancers13010070.
[20] Jiang XS, Xiao JP, Zhang Y, et al.Hypofractionated stereotactic radiotherapy for brain metastases larger than three centimeters[J]. Radiat Oncol, 2012,7:36. DOI: 10.1186/1748-717X-7-36.
[21] Bi N, Ma Y, Xiao J, et al.A phase II trial of concurrent temozolomide and hypofractionated stereotactic radiotherapy for complex brain metastases[J]. Oncologist, 2019,24(9):e914-e920. DOI: 10.1634/theoncologist.2018-0702.
[22] Yan D, Georg D.Adaptive radiation therapy[J]. Z Med Phys, 2018,28(3):173-174. DOI: 10.1016/j.zemedi.2018.03.001.
[23] Tseng CL, Eppinga W, Seravalli E, et al.Dosimetric feasibility of the hybrid magnetic resonance imaging (MRI)-linac system (MRL) for brain metastases: the impact of the magnetic field[J]. Radiother Oncol, 2017,125(2):273-279. DOI: 10.1016/j.radonc.2017.09.036.
[24] Slagowski JM, Redler G, Malin MJ, et al.Dosimetric feasibility of brain stereotactic radiosurgery with a 0.35 T MRI-guided linac and comparison vs a C-arm-mounted linac[J]. Med Phys, 2020,47(11):5455-5466. DOI: 10.1002/mp.14503.
[25] Korytko T, Radivoyevitch T, Colussi V, et al.12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors[J]. Int J Radiat Oncol Biol Phys, 2006,64(2):419-424. DOI: 10.1016/j.ijrobp.2005.07.980.
[26] Minniti G, Clarke E, Lanzetta G, et al.Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis[J]. Radiat Oncol, 2011,6:48. DOI: 10.1186/1748-717X-6-48.
[27] Fast M, van de Schoot A, van de Lindt T, et al. Tumor trailing for liver SBRT on the MR-linac[J]. Int J Radiat Oncol Biol Phys, 2019,103(2):468-478. DOI: 10.1016/j.ijrobp.2018.09.011.
[28] Finazzi T, Palacios MA, Spoelstra F, et al.Role of on-table plan adaptation in MR-guided ablative radiation therapy for central lung tumors[J]. Int J Radiat Oncol Biol Phys, 2019,104(4):933-941. DOI: 10.1016/j.ijrobp.2019.03.035.
[29] Finazzi T, Palacios MA, Haasbeek C, et al.Stereotactic MR-guided adaptive radiation therapy for peripheral lung tumors[J]. Radiother Oncol, 2020,144:46-52. DOI: 10.1016/j.radonc.2019.10.013.
[30] Tocco BR, Kishan AU, Ma TM, et al.MR-guided radiotherapy for prostate cancer[J]. Front Oncol, 2020,10:616291. DOI: 10.3389/fonc.2020.616291.
[31] Cuccia F, Corradini S, Mazzola R, et al.MR-guided hypofractionated radiotherapy: current emerging data and promising perspectives for localized prostate cancer[J]. Cancers (Basel), 2021,13(8):1791. DOI: 10.3390/cancers13081791.
[32] Hijab A, Tocco B, Hanson I, et al.MR-guided adaptive radiotherapy for bladder cancer[J]. Front Oncol, 2021,11:637591. DOI: 10.3389/fonc.2021.637591.
[33] Maziero D, Straza MW, Ford JC, et al.MR-guided radiotherapy for brain and spine tumors[J]. Front Oncol, 2021,11:626100. DOI: 10.3389/fonc.2021.626100.
[34] Dowling JA, Lambert J, Parker J, et al.An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2012,83(1):e5-11. DOI: 10.1016/j.ijrobp.2011.11.056.
[35] Sjölund J, Forsberg D, Andersson M, et al.Generating patient specific pseudo-CT of the head from MR using atlas-based regression[J]. Phys Med Biol, 2015,60(2):825-839. DOI: 10.1088/0031-9155/60/2/825.
[36] Demol B, Boydev C, Korhonen J, et al.Dosimetric characterization of MRI-only treatment planning for brain tumors in atlas-based pseudo-CT images generated from standard T1-weighted MR images[J]. Med Phys, 2016,43(12):6557. DOI: 10.1118/1.4967480.
[37] Litjens G, Kooi T, Bejnordi BE, et al.A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017,42:60-88. DOI: 10.1016/j.media.2017.07.005.
[38] Bourbonne V, Jaouen V, Hognon C, et al.Dosimetric validation of a GAN-based pseudo-CT generation for MRI-only stereotactic brain radiotherapy[J]. Cancers (Basel), 2021,13(5):1082. DOI: 10.3390/cancers13051082.
[39] Dinkla AM, Wolterink JM, Maspero M, et al.MR-only brain radiation therapy: dosimetric evaluation of synthetic CTs generated by a dilated convolutional neural network[J]. Int J Radiat Oncol Biol Phys, 2018,102(4):801-812. DOI: 10.1016/j.ijrobp.2018.05.058.
[40] Raaijmakers AJ, Hårdemark B, Raaymakers BW, et al.Dose optimization for the MRI-accelerator: IMRT in the presence of a magnetic field[J]. Phys Med Biol, 2007,52(23):7045-7054. DOI: 10.1088/0031-9155/52/23/018.
[41] Bol GH, Lagendijk JJ, Raaymakers BW.Compensating for the impact of non-stationary spherical air cavities on IMRT dose delivery in transverse magnetic fields[J]. Phys Med Biol, 2015,60(2):755-768. DOI: 10.1088/0031-9155/60/2/755.