Abstract:Pelvic insufficiency fracture (PIF) is a late complication which is not fully understood after radiotherapy and chemotherapy for cervical cancer and is easily misdiagnosed as bone metastasis. Previous clinical trials focused on the incidence, time and location of PIF, while the analysis of potential risk factors mainly emphasized the clinical characteristics of patients. There were few studies analyzing the correlation between treatment factors and the incidence. The damage of pelvis bone, especially the sacrum, after radiotherapy is mainly related to irradiation mode and dose. In this article, the radiotherapy technology, the formulation of bone‐conserving radiotherapy plan, the dose‐volume parameters of external irradiation and intracavitary brachytherapy, and the correlation between chemotherapy and this disease were reviewed. In the future, according to the advantages of precision radiotherapy technology, it is necessary to optimize the bone preservation plan, reduce the irradiation range and dose of sacrum and pelvis, and then reduce the incidence of PIF, which needs further clinical trials and practice to verify.
Hu Tingting,Yang Hongjuan,Sun Yunchuan. Research progress on pelvic insufficiency fracture (PIF) caused by radiotherapy and chemotherapy of cervical cancer[J]. Chinese Journal of Radiation Oncology, 2022, 31(9): 858-862.
[1] Sapienza LG, Salcedo MP, Ning MS, et al. Pelvic insufficiency fractures after external beam radiation therapy for gynecologic cancers: a meta‐analysis and meta‐regression of3929 patients[J]. Int J Radiat Oncol Biol Phys, 2020, 106(3):475‐484. DOI: 10.1016/j.ijrobp.2019.09.012. [2] Xia YX, Ding HY, Zhao YH, et al. The value of 18F‐FDG combined with 18F‐NaF PET/CT in differentiating sacral insufficiency fractures from metastases[J]. Int J Med Radiol, 2020, 43(4):414‐419. DOI: 10.19300/j. 2020.L17989. [3] Ramlov A, Pedersen EM, Røhl L, et al. Risk factors for pelvic insufficiency fractures in locally advanced cervical cancer following intensity modulated radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2017, 97(5):1032‐1039. DOI: 10.1016/j.ijrobp.2017.01.026. [4] Oh D, Huh SJ, Nam H, et al. Pelvic insufficiency fracture after pelvic radiotherapy for cervical cancer: analysis of risk factors[J]. Int J Radiat Oncol Biol Phys, 2008, 70(4):1183‐1188. DOI: 10.1016/j.ijrobp.2007.08.005. [5] Ogino I, Okamoto N, Ono Y, et al. Pelvic insufficiency fractures in postmenopausal woman with advanced cervical cancer treated by radiotherapy[J]. Radiother Oncol, 2003, 68(1):61‐67. DOI: 10.1016/s0167‐8140(03)00128‐2. [6] Yang HJ, Shuake NJ, Xie CH, et al. The incidence and risk factors of pelvic insufficiency fracture in patients with cervical cancer after intensity‐modulated radiotherapy[J]. Chin J Radiol Med Prot, 2017, 37(3):193‐198. DOI: 10.3760/cma.j.issn.0254‐5098.2017.03.006. [7] Bazire L, Xu H, Foy JP, et al.Pelvic insufficiency fracture (PIF) incidence in patients treated with intensity‐modulated radiation therapy (IMRT) for gynaecological or anal cancer: single‐institution experience and review of the literature[J]. Br J Radiol, 2017, 90(1073):20160885. DOI: 10.1259/bjr.20160885. [8] Tanaka H, Kato A, Kawaguchi M, et al. Pelvic insufficiency fractures after whole pelvic irradiation for uterine cervical cancer[J]. Eur J Gynecol Oncol, 2016,39(3):361‐364. DOI: 10.1016/j.ijrobp.2016.06.1384. [9] Schmeler KM, Jhingran A, Iyer RB, et al. Pelvic fractures after radiotherapy for cervical cancer: implications for survivors[J]. Cancer, 2010, 116(3):625‐630. DOI: 10.1002/cncr.24811. [10] Li XM, Wang G, Hu W, et al. The clinical characteristics and risk factors of pelvic insufficiency fracture in patients with cervical cancer after radiotherapy[J]. Chongqing Medicine, 2014,43(9):1095‐1097.DOI: 10.3969/j.issn.1671‐8348.2014.09.026. [11] Yamamoto K, Nagao S, Suzuki K, et al. Pelvic fractures after definitive and postoperative radiotherapy for cervical cancer: a retrospective analysis of risk factors[J]. Gynecol Oncol, 2017, 147(3):585‐588. DOI: 10.1016/j.ygyno.2017.09.035. [12] Uezono H, Tsujino K, Moriki K, et al. Pelvic insufficiency fracture after definitive radiotherapy for uterine cervical cancer: retrospective analysis of risk factors[J]. J Radiat Res, 2013, 54(6):1102‐1109. DOI: 10.1093/jrr/rrt055. [13] Salcedo MP, Sood AK, Jhingran A, et al. Pelvic fractures and changes in bone mineral density after radiotherapy for cervical, endometrial,vaginal cancer: a prospective study of 239 women[J]. Cancer, 2020, 126(11):2607‐2613. DOI: 10.1002/cncr.32807. [14] Sakaguchi M, Maebayashi T, Aizawa T, et al. Risk factors for sacral insufficiency fractures in cervical cancer after whole pelvic radiation therapy[J]. Anticancer Res, 2019, 39(1):361‐367. DOI: 10.21873/anticanres.13120. [15] Ioffe YJ, Hillen TJ, Zhou G, et al. Postradiation damage to the pelvic girdle in cervical cancer patients: is 30 intensity‐modulated radiation therapy safer than conventional radiation?[J].Int J Gynecol Cancer, 2014,24(4):806‐812. DOI: 10.1097/IGC.0000000000000117. [16] Vitzthum LK, Park H, Zakeri K, et al. Risk of pelvic fracture with radiation therapy in older patients[J]. Int J Radiat Oncol Biol Phys, 2020, 106(3):485‐492. DOI: 10.1016/j.ijrobp.2019.10.006. [17] Tokumaru S, Toita T, Oguchi M, et al. Insufficiency fractures after pelvic radiation therapy for uterine cervical cancer: an analysis of subjects in a prospective multi‐institutional trial,cooperative study of the Japan Radiation Oncology Group (JAROG) andJapanese Radiation Oncology Study Group (JROSG)[J]. Int J Radiat Oncol Biol Phys, 2012, 84(2):e195‐200. DOI: 10.1016/j.ijrobp.2012.03.042. [18] Misra S, Lal P, Kumar Ep S, et al. Comparative assessment of late toxicity in patients of carcinoma cervix treated by radiotherapy versus chemo‐radiotherapy ‐ minimum 5 years follow up[J]. Cancer Treat Res Commun, 2018, 14:30‐36. DOI: 10.1016/j.ctarc.2017.11.007. [19] Shih KK, Folkert MR, Kollmeier MA, et al. Pelvic insufficiency fractures in patients with cervical and endometrial cancer treated with postoperative pelvic radiation[J]. Gynecol Oncol, 2013, 128(3):540‐543. DOI: 10.1016/j.ygyno.2012.12.021. [20] Razavian N, Laucis A, Sun Y, et al. Radiation‐induced insufficiency fractures after pelvic irradiation for gynecologic malignancies: a systematic review[J]. Int J Radiat Oncol Biol Phys, 2020, 108(3):620‐634. DOI: 10.1016/j.ijrobp.2020.05.013. [21] Oike T, Ohno T, Wakatsuki M, et al. The benefit of small bowel and pelvic bone sparing in excluding common iliac lymph node region from conventional radiation fields in patients with uterine cervical cancer: a dosimetric study[J]. J Radiat Res, 2010, 51(6):715‐721. DOI: 10.1269/jrr.10046. [22] Sakaguchi M, Maebayashi T, Aizawa T, et al. Risk factors for sacral insufficiency fractures in cervical cancer after whole pelvic radiation therapy[J]. Anticancer Res, 2019, 39(1):361‐367. DOI: 10.21873/anticanres.13120. [23] Guo Q, Cai S, Qian J, et al.Dose optimization strategy of sacrum limitation in cervical cancer intensity modulation radiation therapy planning[J]. Medicine (Baltimore), 2019, 98(24):e15938. DOI: 10.1097/MD.0000000000015938. [24] Park SH, Kim JC, Lee JE, et al. Pelvic insufficiency fracture after radiotherapy in patients with cervical cancer in the era of PET/CT[J]. Radiat Oncol J, 2011, 29(4):269‐276. DOI: 10.3857/roj.2011.29.4.269. [25] Fu AL, Greven KM, Maruyama Y. Radiation osteitis and insufficiency fractures after pelvic irradiation for gynecologic malignancies[J]. Am J Clin Oncol, 1994, 17(3):248‐254. DOI: 10.1097/00000421‐199406000‐00015. [26] Ogawa Y, Nemoto K, Kakuto Y, et al. Results of radiation therapy for uterine cervical cancer using high dose rate remote after loading system[J]. Tohoku J Exp Med, 2003, 199(4):229‐238. DOI: 10.1620/tjem.199.229. [27] Sapienza LG, Jhingran A, Kollmeier MA, et al. Decrease in uterine perforations with ultrasound image‐guided applicator insertion in intracavitary brachytherapy for cervical cancer: a systematic review and meta‐analysis[J]. Gynecol Oncol, 2018, 151(3):573‐578. DOI: 10.1016/j.ygyno.2018.10.011. [28] Mir R, Dragan AD, Mistry HB, et al. Sacral insufficiency fracture following pelvic radiotherapy in gynaecological malignancies: development of a predictive model[J]. Clin Oncol (R Coll Radiol), 2021, 33(3):e101‐e109. DOI: 10.1016/j.clon.2020.10.013. [29] Kwon JW, Huh SJ, Yoon YC, et al. Pelvic bone complications after radiation therapy of uterine cervical cancer: evaluation with MRI[J]. AJR Am J Roentgenol, 2008, 191(4):987‐994. DOI: 10.2214/AJR.07.3634. [30] Higham CE, Faithfull S. Bone health and pelvic radiotherapy[J]. Clin Oncol (R Coll Radiol), 2015, 27(11):668‐678. DOI: 10.1016/j.clon.2015.07.006. [31] Gondi V, Bentzen SM, Sklenar KL, et al. Severe late toxicities following concomitant chemoradiotherapy compared to radiotherapy alone in cervical cancer: an inter‐era analysis[J]. Int J Radiat Oncol Biol Phys, 2012, 84(4):973‐982. DOI: 10.1016/j.ijrobp.2012.01.064. [32] Ma S, Goh EL, Jin A, et al.Long‐term effects of bisphosphonate therapy: perforations, microcracks and mechanical properties[J]. Sci Rep, 2017, 7:43399. DOI: 10.1038/srep43399. [33] Zhang D, Potty A, Vyas P, et al. The role of recombinant PTH in human fracture healing: a systematic review[J]. J Orthop Trauma, 2014, 28(1):57‐62. DOI: 10.1097/BOT.0b013e31828e13fe.