Advances in application of ctDNA in radiotherapy for non‐small cell lung cancer
Yang Yin, Zhang Tao, Bi Nan
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
Abstract:Circulating tumor DNA (ctDNA) has been the most common biomarker in liquid biopsy because of non‐invasive detection and overcoming intratumor heterogeneity. Lung cancer remains the leading cause of cancer‐related morbidity and mortality all over the world, with non‐small cell lung cancer (NSCLC) constituting 85% of the total cases. Radiotherapy plays an important role in phase Ⅰ‐Ⅳ NSCLC. It can not only kill tumor cells to eradicate cancer directly, but also increase the release of ctDNA indirectly, which improves the accuracy of liquid biopsy. As a result, ctDNA has the potential to be widely used in radiotherapy for NSCLC. In this review, research progress on ctDNA in the diagnosis, prognosis assessment, recurrence detection and response prediction in NSCLC patients treated with radiotherapy were summarized.
Yang Yin,Zhang Tao,Bi Nan. Advances in application of ctDNA in radiotherapy for non‐small cell lung cancer[J]. Chinese Journal of Radiation Oncology, 2022, 31(9): 838-842.
[1] Heitzer E, Haque IS, Roberts C, et al. Current and future perspectives of liquid biopsies in genomics‐driven oncology[J]. Nat Rev Genet, 2019, 20(2):71‐88. DOI: 10.1038/s41576‐018‐0071‐5.
[2] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394‐424. DOI: 10.3322/caac.21492.
[3] Irizarry RA, Ladd‐Acosta C, Wen B, et al. The human colon cancer methylome shows similar hypo‐ and hypermethylation at conserved tissue‐specific CpG island shores[J]. Nat Genet, 2009, 41(2):178‐186. DOI: 10.1038/ng.298.
[4] Snyder MW, Kircher M, Hill AJ, et al. Cell‐free DNA comprises an in vivo nucleosome footprint that informs its tissues‐of‐origin[J]. Cell, 2016, 164(1‐2):57‐68. DOI: 10.1016/j.cell.2015.11.050.
[5] Weng K, Wang Y, Yang D, et al. A method to predict the efficacy of radiotherapy in patients with advanced non‐small cell lung cancer by ctDNA[J]. Int J Radiat Oncol Biol Phys, 2020, 108(3):e540‐e541. DOI: 10.1016/j.ijrobp.2020.07.1686.
[6] Gu J, Zang W, Liu B, et al.Comparison of digital PCR, ion proton with ARMS‐PCR in tumor tissue and plasma of NSCLC patients[J]. J Thorac Oncol, 2017, 12(1):S996. DOI: 10.1016/j.jtho.2016.11.1380.
[7] Su F, Zheng K, Fu Y, et al. Influence of different therapies on EGFR mutants by circulating cell‐free DNA of lung adenocarcinoma and prognosis[J]. Zhongguo Fei Ai Za Zhi, 2018, 21(5):389‐396. DOI: 10.3779/j.issn.1009‐3419.2018.05.06.
[8] Decraene C, Silveira AB, Bidard FC, et al. Multiple hotspot mutations scanning by single droplet digital PCR[J]. Clin Chem, 2018, 64(2):317‐328. DOI: 10.1373/clinchem.2017.272518.
[9] Gassa A, Schuten S, Fassunke J, et al. Detection of somatic mutations in circulating tumor DNA of patients with operable lung cancer‐a pilot study[J]. Thorac Cardiov Surg, 2019, 67(S01):S1‐S100. DOI: 10.1055/s‐0039‐1678935.
[10] Moding EJ, Liu Y, Nabet BY, et al. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non‐small cell lung cancer[J]. Nat Cancer, 2020, 1(2):176‐183. DOI: 10.1038/s43018‐019‐0011‐0.
[11] Tran LS, Nguyen QT, Nguyen CV, et al.Ultra‐deep massive parallel sequencing of plasma cell‐free DNA enables large‐scale profiling of driver mutations in vietnamese patients with advanced non‐small cell lung cancer[J]. Front Oncol, 2020, 10:1351. DOI: 10.3389/fonc.2020.01351.
[12] Wang L, Hu X, Guo Q, et al.CLAmp‐seq: a novel amplicon‐based NGS assay with concatemer error correction for improved detection of actionable mutations in plasma cfDNA from patients with NSCLC[J]. Small Methods, 2020, 4(4):1900357. DOI: 10.1002/smtd.201900357.
[13] Teutsch SM, Bradley LA, Palomaki GE, et al. The evaluation of genomic applications in practice and prevention (EGAPP) initiative: methods of the EGAPP working group[J]. Genet Med, 2009, 11(1):3‐14. DOI: 10.1097/GIM.0b013e318184137c.
[14] Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage[J]. Nat Med, 2014, 20(5):548‐554. DOI: 10.1038/nm.3519.
[15] Chaudhuri AA, Chabon JJ, Lovejoy AF, et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling[J]. Cancer Discov, 2017, 7(12):1394‐1403. DOI: 10.1158/2159‐8290.CD‐17‐0716.
[16] Taus Á, Camacho L, Hernández A, et al.Assessment of KRAS mutations (by digital PCR) in circulating tumoral DNA from lung adenocarcinoma patients[J]. J Thorac Oncol, 2017, 12(1):S511. DOI: 10.1016/j.jtho.2016.11.622.
[17] Chia B, Nei WL, Charumathi S, et al. Baseline plasma EGFR circulating tumour DNA levels in a pilot cohort of EGFR‐mutant limited‐stage lung adenocarcinoma patients undergoing radical lung radiotherapy[J]. Case Rep Oncol, 2020, 13(2):896‐903. DOI: 10.1159/000508932.
[18] Heider K, Gale DG, Marsico G, et al.Detection of residual disease and recurrence in early‐stage nonsmall cell lung cancer (NSCLC) patients using sensitive personalized ctDNA sequencing assays[J]. J Clin Oncol, 2020, 38(15):e15560. DOI: 10.1200/JCO. 2020.38.15_suppl.e15560.
[19] Chen EL, Chaudhuri AA, Nabet BY, et al.Analysis of circulating tumor DNA kinetics during stereotactic ablative radiation therapy for non‐small cell lung cancer[J]. Int J Radiat Oncol Biol Phys, 2018, 102(3):E676. DOI: 10.1016/j.ijrobp.2018.07.1826.
[20] Walls GM, McConnell L, McAleese J, et al. Early circulating tumour DNA kinetics measured by ultra‐deep next‐generation sequencing during radical radiotherapy for non‐small cell lung cancer: a feasibility study[J]. Radiat Oncol, 2020, 15(1):132. DOI: 10.1186/s13014‐020‐01583‐7.
[21] Breadner DA, Vincent MD, Correa R, et al. Exploitation of treatment induced tumor lysis to enhance the sensitivity of ctDNA analysis: a first‐in‐human pilot study[J]. Lung Cancer, 2022, 165:145‐151. DOI: 10.1016/j.lungcan.2022.01.013.
[22] Kageyama SI, Nihei K, Karasawa K, et al.Correction: radiotherapy increases plasma levels of tumoral cell‐free DNA in non‐small cell lung cancer patients[J]. Oncotarget, 2018, 9(34):23844. DOI: 10.18632/oncotarget.25378.
[23] Comino‐Mendez I, Turner N. Predicting relapse with circulating tumor DNA analysis in lung cancer[J]. Cancer Discov, 2017, 7(12):1368‐1370. DOI: 10.1158/2159‐8290.CD‐17‐1086.
[24] Cann C, Kopparapu P, Yan Y, et al.Prolonged time to clearance of circulating‐tumor DNA from patients with limited‐stage small‐cell lung cancer is associated with inferior progression‐free and overall survival[J]. Clin Cancer Res, 2020, 26(11):B20. DOI: 10.1158/1557‐3265.LiqBiop20‐B20.
[25] Ma XM, Ju C, Woestmann C, et al.Early assessment of therapy response in non‐small cell lung cancer (NSCLC) via longitudinal ctDNA analysis[J]. J Clin Oncol, 2019, 37(15): e20701. DOI: 10.1200/JCO.2019.37.15_suppl.e20701.
[26] Corradetti MN, Torok JA, Hatch AJ, et al. Dynamic changes in circulating tumor DNA during chemoradiation for locally advanced lung cancer[J]. Adv Radiat Oncol, 2019, 4(4):748‐752. DOI: 10.1016/j.adro.2019.05.004.
[27] Jin Y, Chen Y, Tang H, et al.Clinical potential of ctDNA‐based TMB in small cell lung cancer recieving chemoradiotherapy[J]. J Clin Oncol, 2020, 38(15):3536. DOI: 10.1200/JCO. 2020.38.15_suppl.3536.
[28] Maung TZ, Ergin HE, Javed M, et al.Immune checkpoint inhibitors in lung cancer: role of biomarkers and combination therapies[J]. Cureus, 2020, 12(5):e8095. DOI: 10.7759/cureus.8095.
[29] Merriott DJ, Chaudhuri AA, Jin M, et al. Circulating tumor DNA quantitation for early response assessment of immune checkpoint inhibitors for lung cancer[J]. Int J Radiat Oncol Biol Phys, 2017, 99(2):S1‐S2. DOI: 10.1016/j.ijrobp.2017.06.061.
[30] Tang C, Lee WC, Reuben A, et al. Immune and circulating tumor DNA profiling after radiation treatment for oligometastatic non‐small cell lung cancer: translational correlatives from a mature randomized phase II trial[J]. Int J Radiat Oncol Biol Phys, 2020, 106(2):349‐357. DOI: 10.1016/j.ijrobp.2019.10.038.
[31] Li J, Jiang W, Wei J, et al.Patient specific circulating tumor DNA fingerprints to monitor treatment response across multiple tumors[J]. J Transl Med, 2020, 18(1):293. DOI: 10.1186/s12967‐020‐02449‐y.
[32] Durm G A, Perkins SM, Hanna NH. A phase II trial of consolidation nivolumab or nivolumab plus ipilimumab following concurrent chemoradiation in unresectable stage Ⅲ NSCLC: BTCRC LUN16‐081[J]. J Clin Oncol, 2018, 36(5):TPS179. DOI: 10.1200/JCO.2018.36.5‐suppl.179.
[33] Gray JE, Villegas A, Daniel D, et al. Three‐year overall survival with durvalumab after chemoradiotherapy in stage III nsclc‐update from PACIFIC[J]. J Thorac Oncol, 2020, 15(2):288‐293. DOI: 10.1016/j.jtho.2019.10.002.
[34] Jabbour SK, Lee KH, Frost N, et al.Phase II study of pembrolizumab (pembro) plus platinum doublet chemotherapy and radiotherapy as first‐line therapy for unresectable, locally advanced stage Ⅲ NSCLC: KEYNOTE‐799[J]. J Clin Oncol, 2020, 38(15):9008. DOI: 10.1200/JCO.2020.38.15‐suppl.9008.
[35] National Comprehensive Cancer Network. Non‐small cell lung cancer (Version 6. 2020)[S/OL]. [2020‐06‐15] http://www. nccn. org/professionals/physician_gls/pdf/nscl. pdf.
[36] Noé J, Lovejoy A, Ou SHI, et al. ALK mutation status before and after alectinib treatment in locally advanced or metastatic ALK‐Positive NSCLC: pooled analysis of two prospective trials[J]. J Thorac Oncol, 2020, 15(4):601‐608. DOI: 10.1016/j.jtho.2019.10.015.