Research progress on the role of astrocytes in radiation-induced brain injury
Zhu Wenjun1, Peng Xiaohong1, Li Xiaoyu1, Luo Na1, Tang Wenhua2, Fu Min1, Zhang Yuanyuan1, Yang Feng1, Zhou Haiting1, Wen Su1
1Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; 2Department of Oncology, Chengdu Seventh People's Hospital, Chengdu 610000, China
Abstract:Radiation-induced brain injury (RBI) is one of the complications after radiotherapy for head and neck malignant tumors, which seriously affects the quality of life of patients. The pathophysiological mechanism of RBI is not completely clear. Current studies suggest that it is involved in a variety of cells in the central nervous system (CNS), whereas astrocyte, as the largest number of glial cells in the CNS, plays an important role in maintaining the CNS homeostasis and responding to CNS injury. In this article, the role of astrocytes in RBI was reviewed.
Zhu Wenjun,Peng Xiaohong,Li Xiaoyu et al. Research progress on the role of astrocytes in radiation-induced brain injury[J]. Chinese Journal of Radiation Oncology, 2022, 31(6): 589-593.
[1] Turnquist C, Harris BT, Harris CC. Radiation-induced brain injury:current concepts and therapeutic strategies targeting neuroinflammation[J]. Neurooncol Adv, 2020, 2(1):vdaa057. DOI:10.1093/noajnl/vdaa057. [2] Balentova S, Adamkov M. Molecular, cellular and functional effects of radiation-induced brain injury:a review[J]. Int J Mol Sci, 2015, 16(11):27796-27815. DOI:10.3390/ijms161126068. [3] Ben Haim L, Rowitch DH. Functional diversity of astrocytes in neural circuit regulation[J]. Nat Rev Neurosci, 2017, 18(1):31-41. DOI:10.1038/nrn.2016.159. [4] Sofroniew MV, Vinters HV. Astrocytes:biology and pathology[J]. Acta Neuropathol, 2010, 119(1):7-35. DOI:10.1007/s00401-009-0619-8. [5] Sofroniew MV. Astrogliosis[J]. Cold Spring Harb Perspect Biol, 2014, 7(2):a020420. DOI:10.1101/cshperspect.a020420. [6] Colombo E, Farina C. Astrocytes:key regulators of neuroinflammation[J]. Trends Immunol, 2016, 37(9):608-620. DOI:10.1016/j.it.2016.06.006. [7] Jha MK, Jo M, Kim JH, et al. Microglia-astrocyte crosstalk:an intimate molecular conversation[J]. Neuroscientist, 2019, 25(3):227-240. DOI:10.1177/1073858418783959. [8] Greene-Schloesser D, Robbins ME. Radiation-induced cognitive impairment—from bench to bedside[J]. Neuro Oncol, 2012, 14 suppl 4(Suppl 4):iv37-44. DOI:10.1093/neuonc/nos196. [9] Khan RB, Krasin MJ, Kasow K, et al. Cyclooxygenase-2 inhibition to treat radiation-induced brain necrosis and edema[J]. J Pediatr Hematol Oncol, 2004, 26(4):253-255. DOI:10.1097/00043426-200404000-00008. [10] Monje ml, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis[J]. Science, 2003, 302(5651):1760-1765. DOI:10.1126/science.1088417. [11] Kyrkanides S, Olschowka JA, Williams JP, et al. TNF alpha and IL-1beta mediate intercellular adhesion molecule-1 induction via microglia-astrocyte interaction in CNS radiation injury[J]. J Neuroimmunol, 1999, 95(1-2):95-106. DOI:10.1016/s0165-5728(98)00270-7. [12] Hwang SY, Jung JS, Kim TH, et al. Ionizing radiation induces astrocyte gliosis through microglia activation[J]. Neurobiol Dis, 2006, 21(3):457-467. DOI:10.1016/j.nbd.2005.08.006. [13] Moravan MJ, Olschowka JA, Williams JP, et al. Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain[J]. Radiat Res, 2011, 176(4):459-473. DOI:10.1667/rr2587.1. [14] Chiang CS, McBride WH, Withers HR. Radiation-induced astrocytic and microglial responses in mouse brain[J]. Radiother Oncol, 1993, 29(1):60-68. DOI:10.1016/0167-8140(93)90174-7. [15] Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638):481-487. DOI:10.1038/nature21029. [16] Neal M, Richardson JR. Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(2):432-443. DOI:10.1016/j.bbadis.2017.11.004. [17] Sofroniew MV. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators[J]. Neuroscientist, 2014, 20(2):160-172. DOI:10.1177/1073858413504466. [18] Moore ED, Kooshki M, Metheny-Barlow LJ, et al. Angiotensin-(1-7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling[J]. Free Radic Biol Med, 2013, 65:1060-1068. DOI:10.1016/j.freeradbiomed.2013.08.183. [19] Turowski P, Adamson P, Greenwood J. Pharmacological targeting of ICAM-1 signaling in brain endothelial cells:potential for treating neuroinflammation[J]. Cell Mol Neurobiol, 2005, 25(1):153-170. DOI:10.1007/s10571-004-1380-0. [20] Olschowka JA, Kyrkanides S, Harvey BK, et al. Icam-1 induction in the mouse CNS following irradiation[J]. Brain Behav Immun, 1997, 11(4):273-285. DOI:10.1006/brbi.1997.0506. [21] Yuan H, Gaber MW, McColgan T, et al. Radiation-induced permeability and leukocyte adhesion in the rat blood-brain barrier:modulation with anti-ICAM-1 antibodies[J]. Brain Res, 2003, 969(1-2):59-69. DOI:10.1016/s0006-8993(03)02278-9. [22] Tiller-Borcich JK, Fike JR, Phillips TL, et al. Pathology of delayed radiation brain damage:an experimental canine model[J]. Radiat Res, 1987, 110(2):161-172. [23] Andrews RN, Metheny-Barlow LJ, Peiffer AM, et al. Cerebrovascular remodeling and neuroinflammation is a late effect of radiation-induced brain injury in non-human primates[J]. Radiat Res, 2017, 187(5):599-611. DOI:10.1667/RR14616.1. [24] Zhou D, Huang X, Xie Y, et al. Astrocytes-derived VEGF exacerbates the microvascular damage of late delayed RBI[J]. Neuroscience, 2019, 408:14-21. DOI:10.1016/j.neuroscience.2019.03.039. [25] Gonzalez J, Kumar AJ, Conrad CA, et al. Effect of bevacizumab on radiation necrosis of the brain[J]. Int J Radiat Oncol Biol Phys, 2007, 67(2):323-326. DOI:10.1016/j.ijrobp.2006.10.010. [26] Nordal RA, Nagy A, Pintilie M, et al. Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury:a role for vascular endothelial growth factor[J]. Clin Cancer Res, 2004, 10(10):3342-3353. DOI:10.1158/1078-0432. CCR-03-0426. [27] Zhou G, Xu Y, He B, et al. Ionizing radiation modulates vascular endothelial growth factor expression through stat3 signaling pathway in rat neonatal primary astrocyte cultures[J]. Brain Behav, 2020, 10(4):e01529. DOI:10.1002/brb3.1529. [28] Bylicky MA, Mueller GP, Day RM. Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury[J]. Oxid Med Cell Longev, 2018, 2018:6501031. DOI:10.1155/2018/6501031. [29] Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease[J]. Trends Pharmacol Sci, 1990, 11(9):379-387. DOI:10.1016/0165-6147(90)90184-a. [30] Schinder AF, Olson EC, Spitzer NC, et al. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity[J]. J Neurosci, 1996, 16(19):6125-6133. DOI:10.1523/JNEUROSCI.16-19-06125.1996. [31] Lipton SA, Nicotera P. Calcium, free radicals and excitotoxins in neuronal apoptosis[J]. Cell Calcium, 1998, 23(2-3):165-171. DOI:10.1016/s0143-4160(98)90115-4. [32] Rothman DL, Sibson NR, Hyder F, et al. in vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics[J]. Philos Trans R Soc Lond B Biol Sci, 1999, 354(1387):1165-1177. DOI:10.1098/rstb.1999.0472. [33] Lepore A C, O'donnell J, Kim A S, et al. Reduction in expression of the astrocyte glutamate transporter, GLT1, worsens functional and histological outcomes following traumatic spinal cord injury[J]. Glia, 2011, 59(12):1996-2005. DOI:10.1002/glia.21241. [34] Sanchez MC, Benitez A, Ortloff L, et al. Alterations in glutamate uptake in NT2-derived neurons and astrocytes after exposure to gamma radiation[J]. Radiat Res, 2009, 171(1):41-52. DOI:10.1667/RR1361.1. [35] Volterra A, Trotti D, Tromba C, et al. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes[J]. J Neurosci, 1994, 14(5 Pt 1):2924-2932. DOI:10.1523/JNEUROSCI.14-05-02924.1994. [36] Cengiz P, Kintner DB, Chanana V, et al. Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation[J]. PLoS One, 2014, 9(1):e84294. DOI:10.1371/journal.pone.0084294. [37] Cramer CK, Cummings TL, Andrews RN, et al. Treatment of radiation-induced cognitive decline in adult brain tumor patients[J]. Curr Treat Options Oncol, 2019, 20(5):42. DOI:10.1007/s11864-019-0641-6. [38] Monje ml, Vogel H, Masek M, et al. Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies[J]. Ann Neurol, 2007, 62(5):515-520. DOI:10.1002/ana.21214. [39] Lee SW, Haditsch U, Cord BJ, et al. Absence of CCL2 is sufficient to restore hippocampal neurogenesis following cranial irradiation[J]. Brain Behav Immun, 2013, 30:33-44. DOI:10.1016/j.bbi.2012.09.010. [40] Silver J, Miller JH. Regeneration beyond the glial scar[J]. Nat Rev Neurosci, 2004, 5(2):146-156. DOI:10.1038/nrn1326. [41] Bush TG, Puvanachandra N, Horner CH, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice[J]. Neuron, 1999, 23(2):297-308. DOI:10.1016/s0896-6273(00)80781-3. [42] Leis JA, Bekar LK, Walz W. Potassium homeostasis in the ischemic brain[J]. Glia, 2005, 50(4):407-416. DOI:10.1002/glia.20145. [43] Anderson MA, Burda JE, Ren Y, et al. Astrocyte scar formation aids central nervous system axon regeneration[J]. Nature, 2016, 532(7598):195-200. DOI:10.1038/nature17623. [44] Lee TC, Greene-Schloesser D, Payne V, et al. Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment[J]. Radiat Res, 2012, 178(1):46-56. DOI:10.1667/rr2731.1. [45] Ramanan S, Kooshki M, Zhao W, et al. The pparalpha agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation[J]. Int J Radiat Oncol Biol Phys, 2009, 75(3):870-877. DOI:10.1016/j.ijrobp.2009.06.059. [46] Zhuang H, Yuan X, Zheng Y, et al. A study on the evaluation method and recent clinical efficacy of bevacizumab on the treatment of radiation cerebral necrosis[J]. Sci Rep, 2016, 6:24364. DOI:10.1038/srep24364. [47] Zhang Q, Li X, He R, et al. The effect of brain-derived neurotrophic factor on radiation-induced neuron architecture impairment is associated with the nfatc4/3 pathway[J]. Brain Res, 2018, 1681:21-27. DOI:10.1016/j.brainres.2017.12.032. [48] Wang XS, Ying HM, He XY, et al. Treatment of cerebral radiation necrosis with nerve growth factor:A prospective, randomized, controlled phase Ⅱ study[J]. Radiother Oncol, 2016, 120(1):69-75. DOI:10.1016/j.radonc.2016.04.027. [49] Tang Y, Rong X, Hu W, et al. Effect of edaravone on radiation-induced brain necrosis in patients with nasopharyngeal carcinoma after radiotherapy:a randomized controlled trial[J]. J Neurooncol, 2014, 120(2):441-447. DOI:10.1007/s11060-014-1573-4.