Abstract:Objective To explore the effect of miR-21 on cell proliferation, apoptosis, invasion and radiosensitivity of cervical cancer HeLa cells and unravel the underlying mechanism. Methods RT-qPCR assay was used to detect the expression levels of miR-21 in cervical cancer tissues and adjacent non-tumor tissues, normal cervical epithelial cells (H8) and cervical cancer cell lines (HeLa, SiHa, ME180). HeLa cell line with inhibition of miR-21 or knockdown of RECK were constructed. CCK-8, Caspase3/7 live cell apoptosis detection, wound healing test, Transwell invasion, clone formation assay, Western blot and immunofluorescence were performed to detect cell viability, apoptosis, migration, invasion, radiosensitivity and related proteins. The dual luciferase assay verified whether miR-21 targeted RECK. Results MiR-21 level in the cervical cancer tissues was significantly higher than that in its corresponding adjacent non-tumor tissues (P<0.05). The expression levels of miR-21 in cervical cancer cell lines HeLa, SiHa and ME180 were significantly up-regulated compared with those in normal cervical epithelial cells H8(all P<0.05). MiR-21 knockdown significantly inhibited HeLa cell viability, promoted cell apoptosis, reduced radiation tolerance, down-regulated the expression of Cyclin D1, Bcl-2, MMP-2 and MMP-9, and up-regulated the expression P21 and Bax proteins (all P<0.05). miR-21 targeted the 3’-UTR of RECK mRNA and negatively regulated the expression of RECK. Silencing RECK reversed the effects of miR-21 knockdown on HeLa cell apoptosis, migration, invasion and radiosensitivity. Conclusions Inhibiting the expression of miR-21significantly decreases cell viability, induces cell apoptosis, weakens cell migration and invasion capabilities, and enhances the radiosensitivity of HeLa cells. The potential mechanism is closely related to the targeted up-regulation of RECK.
Su Yuehui,Zhang Mengzhen. miR-21 regulates the proliferation, invasion and radiosensitivity of cervical cancer HeLa cells by targeting RECK[J]. Chinese Journal of Radiation Oncology, 2022, 31(3): 277-283.
[1] Tsikouras P, Zervoudis S, Manav B, et al. Cervical cancer:screening, diagnosis and staging[J]. J BUON, 2016, 21(2):320-325. [2] Merera D, Jima GH. Precancerous cervical lesions and associated factors among women attending cervical screening at adama hospital medical college, central Ethiopia[J]. Cancer Manag Res, 2021, 13:2181-2189. DOI:10.2147/CMAR. S288398. [3] Vu M, Yu J, Awolude OA, et al. Cervical cancer worldwide[J]. CurrProbl Cancer, 2018, 42(5):457-465. DOI:10.1016/j.currproblcancer.2018.06.003. [4] Bahmani B, Amini-Bayat Z, Ranjbar MM, et al. HPV16-E7 protein T cell epitope prediction and global therapeutic peptide vaccine design based on human leukocyte antigen frequency:an in-silico study[J]. Int J Pept Res Ther, 2020, 27:1-14. DOI:10.1007/s10989-020-10089-5. [5] 刘晓娟,王静,张娟,等. Linc00152靶向miR-376c-3p对宫颈癌细胞活力、凋亡和放射敏感性的影响[J]. 中国病理生理杂志,2020,36(1):67-74. DOI:10.3969/j.issn.1000-4718.2020.01.010. Liu XJ, Wang J, Zhang J, et al. Effect of Linc00152 targeting miR-376c-3p on cell viability, apoptosis, and radiosensitivity of cervical cancer[J]. Chin J Pathophysiol, 2020, 36(1):67-74. DOI:10.3969/j.issn.1000-4718.2020.01.010. [6] Xenaki D, Plotas P, Michail G, et al. Knowledge, behaviours and attitudes for human papillomavirus (HPV) prevention among educators and health professionals in Greece[J]. Eur Rev Med Pharmacol Sci, 2020, 24(14):7745-7752. DOI:10.26355/eurrev_202007_22277. [7] Tang X, Ren H, Guo M, et al. Review on circular RNAs and new insights into their roles in cancer[J]. Comput Struct Biotechnol J, 2021, 19:910-928. DOI:10.1016/j.csbj.2021.01.018. [8] Park S, Eom K, Kim J, et al. MiR-9, miR-21, and miR-155 as potential biomarkers for HPV positive and negative cervical cancer[J]. BMC Cancer, 2017, 17(1):658. DOI:10.1186/s12885-017-3642-5. [9] Zamani S, Sohrabi A, Hosseini SM, et al. Deregulation of miR-21 and miR-29a in cervical cancer related to HPV infection[J]. Microrna, 2019, 8(2):110-115. DOI:10.2174/2211536607666181017124349. [10] Buscaglia LE, Li Y. Apoptosis and the target genes of microRNA-21[J]. Chin J Cancer, 2011, 30(6):371-380. DOI:10.5732/cjc.011.10132. [11] Ebahimzadeh K, Shoorei H, Mousavinejad SA, et al. Emerging role of non-coding RNAs in response of cancer cells to radiotherapy[J]. Pathol Res Pract, 2021, 218:153327. DOI:10.1016/j.prp.2020.153327. [12] Tohyama A, Murakami M, Yoshino K. Strategies for the Treatment of Cervical Cancer with Bulky Pelvic Lymph Nodes:An Overview of the Current Evidence[J]. J UOEH, 2020, 42(4):317-325. DOI:10.7888/juoeh.42.317. [13] 左志,朱芝玲. 宫颈癌根治术宫旁切除范围的研究进展[J]. 现代妇产科进展,2014, 23(12):1016-1018. DOI:10.13283/j.cnki.xdfckjz.2014.12.025. Zuo Z, Zhu ZL. Progress in the scope of radical peripheral resection for cervical cancer[J]. Prog Mod ObstetGynecol, 2014, 23(12):1016-1018. DOI:10.13283/j.cnki.xdfckjz. 2014.12.025. [14] 狄文,余敏华. 局部晚期宫颈癌术前治疗方法选择[J]. 中国实用妇科与产科杂志,2018, 34(11):1190-1193. DOI:10.19538/j.fk2018110102. Di W, Yu MH. Preoperative treatment options for locally advanced cervical cancer[J]. Chin J PractGynecolObstet, 2018, 34(11):1190-1193. DOI:10.19538/j.fk2018110102. [15] 唐德平,姚慧慧,唐金舟,等. 癌症中microRNAs和表观遗传之间的相互调控作用[J]. 生物技术通报,2020,36(8):194-200. DOI:10.13560/j.cnki.biotech.bull.1985.2019-0960. Tang DP, Yao HH, Tang JZ, et al. Interregulation between microRNAs and epigenetics in cancer[J]. Biotech Bulletin, 2020, 36(8):194-200. DOI:10.13560/j.cnki.biotech. bull.1985.2019-0960. [16] 徐建萍,叶丽君,喻长法,等.miR-34a和miR-21在宫颈癌中的表达及其临床意义[J]. 中国卫生检验杂志,2020, 30(11):1281-1283. Xu JP, Ye LJ, Yu CF, et al. Expression of miR-34a and miR-21 in cervical cancer and its clinical significance[J]. Chin J Heal Inspect, 2020, 30(11):1281-1283. [17] 黄超有,吴德华,韩铮,等. 敲除TPX2基因可以降低乳腺癌干细胞活性及增加放疗敏感性[J]. 分子影像学杂志,2017, 40(2):210-213. DOI:10.3969/j.issn.1674-4500.2017.02.24. Huang CY, Wu DH, Han Z, et al. Knockdown of TPX2 reduced breast cancer stem cell activity and increased sensitivity to radiation therapy[J]. J Mol Imag, 2017, 40(2):210-213. DOI:10.3969/j.issn.1674-4500.2017.02.24. [18] 李雪,裴承斌,杨玲玲,等. 表皮生长因子对卵巢黄素化颗粒细胞cyclin D1和P21表达的影响[J]. 宁夏医科大学学报,2020, 42(5):440-444+462. DOI:10.16050/j.cnki.issn1674-6309.2020.05.002. Li X, Pei CB, Yang LL, et al. Effect of epidermal growth factor on cyclin D1 and P21 expression in ovarian flavitinated granule cells[J]. J Ningxia Med Univ, 2020, 42(5):440-444+462. DOI:10.16050/j.cnki.issn1674-6309.2020.05.002. [19] 杨连君,曹雪涛,于益芝. bcl-2,bax与肿瘤细胞凋亡[J]. 中国肿瘤生物治疗杂志,2003,10(3):232-234. DOI:10.3872/j.issn.1007-385X.2003.03.021 Yang LJ, Cao XT, Yu YZ. For bcl-2, bax, together with tumor cell apoptosis[J]. Chin J Tumor Biol Ther, 2003,10(3):232-234. DOI:10.3872/j.issn.1007-385X.2003.03.021 [20] Bahreyni-Toossi MT, Dolat E, Khanbabaei H, et al. MicroRNAs:potential glioblastoma radiosensitizer by targeting radiation-related molecular pathways[J]. Mutat Res, 2019, 816-818:111679. DOI:10.1016/j.mrfmmm.2019.111679. [21] Zhang CC, Li Y, Feng XZ, et al. Circular RNA circ_0001287 inhibits the proliferation, metastasis, and radiosensitivity of non-small cell lung cancer cells by sponging microRNA miR-21 and up-regulating phosphatase and tensin homolog expression[J]. Bioengineered, 2021, 12(1):414-425. DOI:10.1080/21655979.2021.1872191. [22] Puccetti MV, Adams CM, Dan TD, et al. MicroRNA-21 is required for hematopoietic cell viability after radiation exposure[J]. Int J Radiat Oncol Biol Phys, 2019, 104(5):1165-1174. DOI:10.1016/j.ijrobp.2019.04.020. [23] Kopcalic K, Petrovic N, Stanojkovic TP, et al. Association between miR-21/146a/155 level changes and acute genitourinary radiotoxicity in prostate cancer patients:a pilot study[J]. Pathol Res Pract, 2019, 215(4):626-631. DOI:10.1016/j.prp.2018.12.007. [24] Takagi S, Kitamura T, Hosaka Y, et al. Molecular cloning of canine membrane-anchored inhibitor of matrix metalloproteinase, RECK[J]. J Vet Med Sci, 2005, 67(4):385-391. DOI:10.1292/jvms.67.385. [25] Zhang X, Healy C, Nothnick WB. Estrogen suppresses expression of the matrix metalloproteinase inhibitor reversion-inducing cysteine-rich protein with Kazal motifs (RECK) within the mouse uterus[J]. Endocrine, 2012, 42(1):97-106. DOI:10.1007/s12020-012-9614-2. [26] Gabriely G, Wurdinger T, Kesari S, et al. MicroRNA-21 promotes glioma invasion by targeting matrix metalloproteinase regulators[J]. Mol Cell Biol, 2008, 28(17):5369-5380. DOI:10.1128/MCB.00479-08. [27] Lin J, Liu Z, Liao S, et al. Elevation of long non-coding RNA GAS5 and knockdown of microRNA-21 up-regulate RECK expression to enhance esophageal squamous cell carcinoma cell radio-sensitivity after radiotherapy[J]. Genomics, 2020, 112(3):2173-2185. DOI:10.1016/j.ygeno.2019.12.013.