The realization modes of non-coplanar radiotherapy technology
Ma Min, Dai Jianrong
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
Abstract:Non-coplanar radiotherapy is a kind of radiotherapy technology which employs multiple non-coplanar fixed fields or non-coplanar arcs. The non-coplanar field can be defined that the central axis of each field is not on the same plane, while the non-coplanar arc can be described that the trajectory formed by each arc is not on the same plane. Compared with coplanar radiotherapy, non-coplanar radiotherapy can achieve multi-angle or multi-radian irradiation, which effectively improves the focusing level of ray and is beneficial to enlarge the radiation dose of the target area between the surrounding normal tissues. Its dosimetric advantages have been proven in multiple types of tumors, such as intracranial tumors, liver cancer and lung cancer, etc. Multiple approaches can be employed to realize non-coplanar radiotherapy, which can be divided into the non-coplanar conic radiotherapy, non-coplanar conformal radiotherapy, non-coplanar intensity-modulated radiotherapy and non-coplanar volumetric modulated arc therapy according to the established sequence. In this review, the development process and principal characteristics of these implementations were summarized.
[1] WEBB S, POWERS W. The Physics of three-dimensional radiation therapy, conformal radiation therapy, radiosurgery and treatment planning[J]. Zeitsch Med Phys, 1994, 47(6):75-76.
[2] WILKE L, ANDRATSCHKE N, BLANCK O, et al. ICRU report 91 on prescribing, recording, and reporting of stereotactic treatments with small photon beams:Statement from the DEGRO/DGMP working group stereotactic radiotherapy and radiosurgery[J]. Strahlenther Onkol, 2019, 195(3):193-198. DOI:10.1007/s00066-018-1416-x.
[3] MONACO EA, GRANDHI R, NIRANJAN A, et al. The past, present and future of Gamma Knife radiosurgery for brain tumors:the Pittsburgh experience[J]. Expert Rev Neurother, 2012, 12(4):437-445. DOI:10.1586/ern.12.16.
[4] LEKSELL L. The stereotaxic method and radiosurgery of the brain[J]. Acta Chir Scand, 1951, 102(4):316-319.
[5] BENEDICT SH, YENICE KM, FOLLOWILL D, et al. Stereotactic body radiation therapy:the report of AAPM Task Group 101[J]. Med Phys, 2010, 37(8):4078-4101. DOI:10.1118/1.3438081.
[6] CORDEIRO DP, SCHLESINGER DJ. Leksell gamma knife radiosurgery//Trifiletti DM, Chao ST, Sahgal A, et al. Stereotactic radiosurgery and stereotactic body radiation therapy:a comprehensive guide[M]. Cham:Springer International Publishing, 2019:55-65. DOI:10.1007/978-3-030-16924-4_5.
[7] LASAK JM, GORECKI JP. The history of stereotactic radiosurgery and radiotherapy[J]. Otolaryngol Clin North Am, 2009, 42(4):593-599. DOI:10.1016/j.otc.2009.04.003.
[8] PETTI PL, RIVARD MJ, ALVAREZ PE, et al. Recommendations on the practice of calibration, dosimetry, and quality assurance for gamma stereotactic radiosurgery:Report of AAPM Task Group 178[J]. Med Phys, 2021, 48(7):e733-e770. DOI:10.1002/mp.14831.
[9] YU CX, SHAO X, ZHANG J, et al. GammaPod-a new device dedicated for stereotactic radiotherapy of breast cancer[J]. Med Phys, 2013, 40(5):051703. DOI:10.1118/1.4798961.
[10] KOPCHICK B, XU H, NIU Y, et al. Technical Note:Dosimetric feasibility of lattice radiotherapy for breast cancer using GammaPod[J]. Med Phys, 2020, 47(9):3928-3934. DOI:10.1002/mp.14379.
[11] KILBY W, DOOLEY JR, KUDUVALLI G, et al. The CyberKnife (R) robotic radiosurgery system in 2010[J]. Technol Cancer Res Treat, 2010, 9(5):433-452. DOI:10.1177/153303461000900502.
[12] ADLERJR, CHANG SD, MURPHY MJ, et al. The Cyberknife:a frameless robotic system for radiosurgery[J]. Stereotact Funct Neurosurg, 1997, 69(1-4 Pt 2):124-128. DOI:10.1159/000099863.
[13] WEIDLICH GA, SCHNEIDER MB, ADLER JR. Self-shielding analysis of the Zap-X system[J]. Cureus, 2017, 9(12):e1917. DOI:10.7759/cureus.1917.
[14] WEIDLICH GA, BODDULURI M, ACHKIRE Y, et al. Characterization of a novel 3 megavolt linear accelerator for dedicated intracranial stereotactic radiosurgery[J]. Cureus, 2019, 11(3):e4275. DOI:10.7759/cureus.4275.
[15] WEIDLICH GA, SCHNEIDER MB, ADLER JR. Characterization of a novel revolving radiation collimator[J]. Cureus, 2018, 10(2):e2146. DOI:10.7759/cureus.2146.
[16] CASEBOW MP. Angulation of radiotherapy treatment machines in a non-co-planar field technique[J]. Br J Radiol, 1980, 53(627):259-260. DOI:10.1259/0007-1285-53-627-259.
[17] FODOR J 3RD, BRENEMAN JC, LAMBA MA, et al. Modification of a linear accelerator table top for non-coplanar conformal brain radiotherapy[J]. Med Dosim, 1998, 23(1):27-29. DOI:10.1016/s0958-3947(97)00121-0.
[18] BEDFORD JL, ZIEGENHEIN P, NILL S, et al. Beam selection for stereotactic ablative radiotherapy using Cyberknife with multileaf collimation[J]. Med Engin Phys, 2019, 64(1):28-36. DOI:10.1016/j.medengphy.2018.12.011.
[19] DERYCKE S, VAN DUYSE B, DE GERSEM W, et al. Non-coplanar beam intensity modulation allows large dose escalation in stage Ⅲ lung cancer[J]. Radiother Oncol, 1997, 45(3):253-261. DOI:10.1016/s0167-8140(97)00132-1.
[20] NIU C, LI M, YAN H, et al. Selecting noncoplanar beam directions in a patient coordinate system for radiotherapy planning[J]. Med Dosim, 2019, 44(3):279-283. DOI:10.1016/j.meddos.2018.10.003.
[21] MEEDT G, ALBER M,NüSSLIN F. Non-coplanar beam direction optimization for intensity-modulated radiotherapy[J]. Phys Med Biol, 2003, 48(18):2999-3019. DOI:10.1088/0031-9155/48/18/304.
[22] YU CX, LI XA, MA L, et al. Clinical implementation of intensity-modulated arc therapy[J]. Int J Radiat Oncol BiolPhys, 2002, 53(2):453-463. DOI:10.1016/S0360-3016(02)02777-3.
[23] YU CX, JAFFRAY DA, WONG JW, et al. 54-intensity modulated ARC therapy:a new method for delivering conformal treatments[J]. Radiother Oncol, 1995, 37:S16. DOI:10.1016/0167-8140(96)80491-9.
[24] POPPLE RA, BALTER PA, ORTON CG. Point/Counterpoint. Because of the advantages of rotational techniques, conventional IMRT will soon become obsolete[J]. Med Phys, 2014, 41(10):100601. DOI:10.1118/1.4885996.
[25] OTTO K. Volumetric modulated arc therapy:IMRT in a single gantry arc[J]. Med Phys, 2008, 35(1):310-317. DOI:10.1118/1.2818738.
[26] SMYTH G, EVANS PM, BAMBER JC, et al. Recent developments in non-coplanar radiotherapy[J]. Br J Radiol, 2019, 92(1097):20180908. DOI:10.1259/bjr.20180908.
[27] KRAYENBUEHL J, DAVIS JB, CIERNIK IF. Dynamic intensity-modulated non-coplanar arc radiotherapy (INCA) for head and neck cancer[J]. Radiother Oncol, 2006, 81(2):151-157. DOI:10.1016/j.radonc.2006.09.004.
[28] SHAITELMAN SF, KIM LH, YAN D, et al. Continuous arc rotation of the couch therapy for the delivery of accelerated partial breast irradiation:a treatment planning analysis[J]. Int J Radiat Oncol Biol Phys, 2011, 80(3):771-778. DOI:10.1016/j.ijrobp.2010.03.004.
[29] WOODS K, NGUYEN D, TRAN A, et al. Viability of noncoplanar VMAT for liver SBRT compared with coplanar VMAT and beam orientation optimized 4π IMRT[J]. Adv Radiat Oncol, 2016, 1(1):67-75. DOI:10.1016/j.adro.2015.12.004.
[30] LYU Q, YU VY, RUAN D, et al. A novel optimization framework for VMAT with dynamic gantry couch rotation[J]. Phys Med Biol, 2018, 63(12):125013. DOI:10.1088/1361-6560/aac704.
[31] LANGHANS M, UNKELBACH J, BORTFELD T, et al. Optimizing highly noncoplanar VMAT trajectories:the NoVo method[J]. Phys Med Biol, 2018, 63(2):025023. DOI:10.1088/1361-6560/aaa36d.
[32] YU VY, TRAN A, NGUYEN D, et al. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery[J]. Med Phys, 2015, 42(11):6457-6467. DOI:10.1118/1.4932631.
[33] YU VY, FAHIMIAN BP, XING L, et al. Quality control procedures for dynamic treatment delivery techniques involving couch motion[J]. Med Phys, 2014, 41(8 Pt 1):081712. DOI:10.1118/1.4886757.
[34] HIRASHIMA H, NAKAMURA M, MIYABE Y, et al. Quality assurance of non-coplanar, volumetric-modulated arc therapy employing a C-arm linear accelerator, featuring continuous patient couch rotation[J]. Radiat Oncol, 2019, 14(1):62. DOI:10.1186/s13014-019-1264-6.