[an error occurred while processing this directive]|[an error occurred while processing this directive]
自动分割技术在鼻咽癌靶区及危及器官勾画应用价值的研究
刘洋, 张烨, 易俊林
国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院放疗科 100021
The value of automatic segmentation of target volume and organs at risk for nasopharngeal carcinoma
Liu Yang, Zhang Ye, Yi Junlin
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
Abstract:Objective To evaluate the application value of deep deconvolutional neural network (DDNN) model for automatic segmentation of target volume and organs at risk (OARs) in patients with nasopharngeal carcinoma (NPC). Methods Based on the CT images of 800 NPC patients,an end-to-end automatic segmentation model was established based on DDNN algorithm. Ten newly diagnosed with NPC were allocated into the test set. Using this DDNN model, 10 junior physicians contoured the region of interest (ROI) on 10 patients by using both manual contour (MC) and DDNN deep learning-assisted contour (DLAC) methods independently. The accuracy of ROI contouring was evaluated by using the DICE coefficient and mean distance to agreement (MDTA). The coefficient of variation (CV) and standard distance deviation (SDD) were rendered to measure the inter-observer variability or consistency. The time consumed for each of the two contouring methods was also compared. Results DICE values of gross target volume (GTV) and clinical target volume (CTV), MDTA of GTV and CTV by using DLAC were 0.67±0.15 and 0.841±0.032,(0.315±0.23)mm and (0.032±0.098)mm, respectively, which were significantly better than those in the MC group (all P<0.001). Except for the spinal cord, lens and mandible, DLAC improved the DICE values of the other OARs, in which mandible had the highest DICE value and optic chiasm had the lowest DICE value. Compared with the MC group, GTV, CTV, CV and SDD of OAR were significantly reduced (all P<0.001), and the total contouring time was significantly shortened by 63.7% in the DLAC group (P<0.001). Conclusion Compared with MC, DLAC is a promising method to obtain superior accuracy, consistency, and efficiency for the GTV, CTV and OAR in NPC patients.
Liu Yang,Zhang Ye,Yi Junlin. The value of automatic segmentation of target volume and organs at risk for nasopharngeal carcinoma[J]. Chinese Journal of Radiation Oncology, 2021, 30(9): 882-887.
[1] Chen AM, Chin R, Beron P, et al.Inadequate target volume delineation and local-regional recurrence after intensity-modulated radiotherapy for human papillomavirus-positive oropharynx cancer[J]. Radiother Oncol, 2017, 123(3):412-418.DOI:10.1016/j.radonc.2017.04.015. [2] Chen YP, Chan ATC, Le QT, et al.Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192):64-80.DOI:10.1016/s0140-6736(19)30956-0. [3] Lin L, Dou Q, Jin YM, et al.Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma[J]. Radiology, 2019, 291(3):677-686.DOI:10.1148/radiol.2019182012. [4] Isambert A, Dhermain F, Bidault F, et al.Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context[J]. Radiother Oncol, 2008, 87(1):93-99.DOI:10.1016/j.radonc.2007.11.030. [5] Teguh DN, Levendag PC, Voet PW, et al.Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck[J]. Int J Radiat Oncol Biol Phys, 2011, 81(4):950-957.DOI:10.1016/j.ijrobp.2010.07.009. [6] Shin HC, Roth HR, Gao M, et al.Deep Convolutional neural networks for computer-aided detection:CNN architectures, dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging, 2016, 35(5):1285-1298.DOI:10.1109/TMI.2016.2528162. [7] Men K, Dai J, Li Y.Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks[J]. Med Phys, 2017, 44(12):6377-6389.DOI:10.1002/mp.12602. [8] Bi N, Wang J, Zhang T, et al.Deep learning improved clinical target volume contouring quality and efficiency for postoperative radiation therapy in non-small cell lung cancer[J]. Front Oncol, 2019, 9:1192.DOI:10.3389/fonc.2019.01192. [9] Oktay O, Nanavati J, Schwaighofer A, et al.Evaluation of deep learning to augment image-guided radiotherapy for head and neck and prostate cancers[J]. JAMA Netw Open, 2020, 3(11):e2027426.DOI:10.1001/jamanetworkopen.2020.27426. [10] van Dijk LV, Van den Bosch L, Aljabar P, et al.Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring[J]. Radiother Oncol, 2020, 142:115-123.DOI:10.1016/j.radonc.2019.09.022. [11] Men K, Chen X, Zhang Y, et al.Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images[J]. Front Oncol, 2017, 7:315.DOI:10.3389/fonc.2017.00315. [12] Men K, Zhang T, Chen X, et al.Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning[J]. Phys Med, 2018, 50:13-19.DOI:10.1016/j.ejmp.2018.05.006. [13] Piert M, Shankar PR, Montgomery J, et al.Accuracy of tumor segmentation from multi-parametric prostate MRI and (18) F-choline PET/CT for focal prostate cancer therapy applications[J]. EJNMMI Res, 2018, 8(1):23.DOI:10.1186/s13550-018-0377-5. [14] Taha AA, Hanbury A.Metrics for evaluating 3D medical image segmentation:analysis, selection, and tool[J]. BMC Med Imaging, 2015, 15:29.DOI:10.1186/s12880-015-0068-x. [15] O'sullivan D, Unwin DJ.Geographic information analysis[EB/OL][2008-02-29]. https://doi.org/10.1111/j.1467-9272.2005.00504_11.x. [16] Guo Z, Guo N, Gong K, et al.Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network[J]. Phys Med Biol, 2019, 64(20):205015.DOI:10.1088/1361-6560/ab440d. [17] Huang B, Chen Z, Wu PM, et al.Fully Automated delineation of gross tumor volume for head and neck cancer on PET-CT using deep learning:a dual-center study[J]. Contrast Media Mol Imag, 2018, 2018:8923028.DOI:10.1155/2018/8923028. [18] Yang J, Beadle BM, Garden AS, et al.A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy[J]. Med Phys, 2015, 42(9):5310-5320.DOI:10.1118/1.4928485. [19] Daisne JF, Blumhofer A.Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes:a clinical validation[J]. Radiat Oncol, 2013, 8:154.DOI:10.1186/1748-717X-8-154. [20] Stapleford LJ, Lawson JD, Perkins C, et al.Evaluation of automatic atlas-based lymph node segmentation for head-and-neckcancer[J]. Int J Radiat Oncol Biol Phys, 2010, 77(3):959-966.DOI:10.1016/j.ijrobp.2009.09.023. [21] Gorthi S, Duay V, Houhou N, et al.Segmentation of head and neck lymph node regions for radiotherapy planning using active contour-based atlas registration[J]. Ieee J Select Topics Signal Proc, 2009, 3(1):135-47.DOI:10.1109/Jstsp.2008.2011104. [22] Fung N, Hung WM, Sze CK, et al.Automatic segmentation for adaptive planning in nasopharyngeal carcinoma IMRT:Time, geometrical, and dosimetric analysis[J]. Med Dosim, 2020, 45(1):60-65.DOI:10.1016/j.meddos.2019.06.002.