The setup errors of thermoplastic head and shoulder molds with or without vacuum pad in HFSRT for brain metastases in the lung cancer
Li An1, Liu Jia2, Lai Jialu1, Wang Qiang1, Xu Qingfeng1, Zhong Renming1, He Yinbo1, Bai Sen1, Zhou Lin3
1Department of Radiotherapy, State Key Laboratory of Biotherapy, Cancer Center, WestChina Hospital, Sichuan University, Chengdu 610041, China; 2Department of First Oncology, Chengdu First People's Hospital, Chengdu 610016, China; 3Department of Thoracic Oncology, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
Abstract:Objective To retrospectively analyze the setup errors of thermoplastic head and shoulder molds alone or combined with vacuum pad in hypofractionated stereotactic radiotherapy (HFSRT) for non-small cell lung cancer (NSCLC) with brain metastases. Methods Fifty-four NSCLC patients with brain metastases who received HFSRT from 2017 to 2019 were enrolled in this study. Twenty-four patients were fixed with thermoplastic head and shoulder molds (group A),and 30 patients were fixed with thermoplastic head and shoulder molds plus vacuum pad (group B). The interfraction and intrafraction setup errors were acquired from cone-beam CT online image registration before and after the HFSRT. Optical surface system was applied in monitoring the intrafraction setup errors. The setup errors in each direction between two groups were analyzed by independent samples t-test. Results For the interfraction setup errors of the whole group, the proportion of the horizontal setup errors of ≥3mm was 7.0% to 15.4% and 7.0% to 12.6% for the rotation setup errors of ≥2°. In group A, the anteroposterior setup error was (1.035±1.180)mm, significantly less than (1.512±0.955)mm in group B (P=0.009). In group A, the sagittal rotation setup error was 0.665°±0.582°, significantly less than 0.921°±0.682° in group B (P=0.021). For the intrafraction setup errors of the whole group, the proportion of horizontal setup errors of ≥1mm was 0% to 0.7%, whereas no rotation setup error of ≥1° were observed. In group B, bilateral, anteroposterior and sagittal rotation setup errors were (0.047±0.212)mm,(0.023±0.152)mm and 0.091°±0.090°, significantly less compared with (0.246±0.474)mm,(0.140±0.350)mm and 0.181°±0.210° in group A (P=0.004, P=0.020, P=0.001), respectively. Optical surface monitoring data were consistent with the obtained results. Conclusions Thermoplastic head and shoulder molds (with or without vacuum pad) combined with online image registration and six-dimensional robotic couch correction can be applied in HFSRT for brain metastases from NSCLC. The intrafraction setup errors in group B are smaller than those in group A. Optical surface system has certain value in monitoring the intrafractional movement.
Li An,Liu Jia,Lai Jialu et al. The setup errors of thermoplastic head and shoulder molds with or without vacuum pad in HFSRT for brain metastases in the lung cancer[J]. Chinese Journal of Radiation Oncology, 2021, 30(6): 592-597.
[1] Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases[J]. Curr Oncol Rep, 2012, 14(1):48-54.DOI:10.1007/s11912-011-0203-y. [2] Dawe DE, Greenspoon JN, Ellis PM. Brain metastases in non-small-cell lung cancer[J]. Clin Lung Cancer, 2014, 15(4):249-257.DOI:10.1016/j.cllc. 2014.04.008. [3] Asher AL, Burri SH, Wiggins WF, et al. A new treatment paradigm:neoadjuvant radiosurgery before surgical resection of brain metastases with analysis of local tumor recurrence[J]. Int J Radiat Oncol Biol Phys, 2014, 88(4):899-906.DOI:10.1016/j. ijrobp.2013.12.013. [4] Karlsson B, Hanssens P, Wolff R, et al. Thirty years' experience with Gamma Knife surgery for metastases to the brain[J]. J Neurosurg, 2009, 111(3):449-457.DOI:10.3171/2008. 10.JNS08214. [5] Yamamoto M, Serizawa T, Shuto T, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901):a multi-institutional prospective observational study[J]. Lancet Oncol, 2014, 15(4):387-395. DOI:10.1016/S1470-2045(14)70061-0. [6] Yamamoto M, Serizawa T, Higuchi Y, et al. A multi-institutional prospective observational study of stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901study update):irradiation-related complications and long-term maintenance of mini-mental state examination scores[J]. Int J Radiat Oncol Biol Phys, 2017, 99(1):31-40.DOI:10.1016/j. ijrobp. 2017.04.037. [7] Lamba M, Breneman JC, Warnick RE. Evaluation of image-guided positioning for frameless intracranial radiosurgery[J]. Int J Radiat Oncol Biol Phys, 2009, 74(3):913-919. DOI:10.1016/j. ijrobp. 2009. 01.008. [8] Murphy MJ, Chang SD, Gibbs IC, et al. Patterns of patient movement during frameless image-guided radiosurgery[J]. Int J Radiat Oncol Biol Phys, 2003, 55(5):1400-1408. DOI:10.1016/s0360-3016(02)04597-2. [9] Takakura T, Mizowaki T, Nakata M, et al. The geometric accuracy of frameless stereotactic radiosurgery using a 6D robotic couch system[J]. Phys Med Biol, 2010;55(1):1-10.DOI:10.1088/0031-9155/55/1/001. [10] Ackerly T, Lancaster CM, Geso M, et al. Clinical accuracy of ExacTrac intracranial frameless stereotactic system[J]. Med Phys, 2011, 38(9):5040-5048. DOI:10.1118/1.3611044. [11] Li G, Ballangrud A, Kuo LC, et al. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three dimensional optical surface imaging[J]. Med Phys, 2011, 38(7):3981-3994.DOI:10.1118/1.3596526. [12] Almeida TVR, Cordova-Junior AL, Piedade PA, et al. Analysis of translational errors in frame-based and frameless cranial radiosurgery using an anthropomorphic phantom[J]. Radiol Bras, 2016, 49(2):98-103.DOI:10.1590/0100-3984.2015.0053. [13] Babic S, Lee Y, Ruschin M, et al. To frame or not to frame? Cone-beam CT-based analysis of head immobilization devices specific to linac-based stereotactic radiosurgery and radiotherapy[J]. J Appl Clin Med Phys, 2018, 19(2):111-120.DOI:10.1002/arcm2.12251. [14] 牛保龙,曲宝林,金丽媛,等. 发泡剂泡沫垫与头肩低温热塑模在放疗中体位固定稳定性的比较[J]. 中国医学装备,2017, 14(7):32-36.DOI:10.3969/J.ISSN.1672-8270.2017.07.008. Niu BL, Qu BL, Jin LY, et al. Comparison of postural fixation stability of foam pad and head-shoulder low-temperature plastic mold during radiotherapy[J]. Chin Med Equip, 2017, 14(7):32-36.DOI:10.3969/j.issn.1672-8270.2017.07.008. [15] Zhang MT, Zhang QH, Gan H, et al. Setup uncertainties in linear accelerator based stereotactic radiosurgery and a derivation of the corresponding setup margin for treatment planning[J]. Phys Med, 2016, 32(2):379-385. DOI:10.1016/j. ejmp. 2016.02. 002. [16] 李志聪,李陆军,向昭雄,等. 鼻咽癌IMRT两种不同体位固定方法的摆位误差分析[J]. 中华放射肿瘤学杂志,2016, 25(3):226-227.DOI:10.3760/cma.j.issn.1004-4221.2016.03.007. Li ZC, Li LJ, Xiang ZX, et al. Error analysis IMRT two different methods of position fixation for nasopharyngeal carcinoma[J]. Chin J Radiat Oncol, 2016, 25(3):226-227.DOI:10.3760/cma.j.issn.1004-4221.2016.03.007. [17] 潘建基,潘才住,陈传本,等. 摆位系统误差对鼻咽癌调强放疗剂量的影响[J]. 中华放射肿瘤学杂志, 2007, 16(5):394-396.DOI:10.3760/j.issn:1004-4221.2007.05. 018. Pan JJ, Pan CZ, Chen CB, et al. Effect of pendulum system error on intensity modulated radiation dose of nasopharyngeal carcinoma[J]. Chin J Radiat Oncol, 2007, 16(5):394-396.DOI:10.3760/j.issn:1004-4221.2007.05.018. [18] Gutfeld O, Kretzler AE, Kashani R, et al. Influence of rotations on dose distributions in spinal stereotactic body radio therapy (SBRT)[J]. Int J Radiat Oncol Biol Phys, 2009, 73(5):1596-1601.DOI:10.1016/j.ijrobp.2008.12.025.