Research progress on application of 3D printing technique in radiotherapy
Hou Yanjie1, Yu Jiangping2, Wang Junjie3
1Department of Radiation Oncology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; 2Department of Nuclear Medicine, NanjingFirst Hospital, Nanjing Medical University, Nanjing 210006, China; 3Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
Abstract:Three-dimensional (3D) printing technique has been improving the industrial process from uniform pipeline production procedure in manufacture into individualized production with distributed network. 3D printing technique also provokes these changes in the field of medicine, especially in orthopedics, stomatology and radiology. The role of 3D printing technique has been increasingly highlighted in tumor radiotherapy. Current studies and application mainly focus on personalized tissue compensato (bolus), brachytherapy (high-dose post-loading and particle implantation therapy), 3D printing personalized phantom and individualized fixtures, etc. In this article, research progresses on the application of 3D printing technique in radiotherapy at home and abroad were reviewed.
Hou Yanjie,Yu Jiangping,Wang Junjie. Research progress on application of 3D printing technique in radiotherapy[J]. Chinese Journal of Radiation Oncology, 2021, 30(2): 217-220.
[1] Oberoi G, Nitsch S, Edelmayer M, et al. 3D printing-encompassing the facets of dentistry[J]. Front Bioeng Biotechnol, 2018, 22(6):172. DOI:10.3389/fbioe.2018.00172. [2] Mitsouras D, Liacouras P, Imanzadeh A, et al. Medical 3D printing for the radiologist[J]. Radiographics, 2015, 35(7):1965-1988. DOI:10.1148/rg.2015140320. [3] Lee MC, Jiang SB, Ma CM. Monte Carlo and experimental investigations of multileaf collimated electron beams for modulated electron radiation therapy[J]. Med Phys, 2000, 27(12):2708-2718. DOI:10.1118/1.1328082. [4] Su S, Moran K, Robar JL. Design and production of 3D printed bolus for electron radiation therapy[J]. J Appl Clin Med Phys, 2014, 15(4):194-211. DOI:10.1120/jacmp.v15i4.4831. [5] Ricotti R, Ciardo D, Pansini F, et al. Dosimetric characterization of 3D printed bolus at different infill percentage for external photon beam radiotherapy[J]. Phys Med, 2017, 39:25-32. DOI:10.1016/j.ejmp.2017.06.004. [6] Canters RA, Lips IM, Wendling M, et al. Clinical implementation of 3D printing in the construction of patient specific bolus for electron beam radiotherapy for non-melanoma skin cancer[J]. Radiother Oncol, 2016, 121(1):148-153. DOI:10.1016/j.radonc.2016.07.011. [7] 王峻峰,李定宇,黄章玲,等. Merkel细胞癌电子线放疗中3D打印补偿物的模拟应用[J]. 中华放射肿瘤学杂志, 2016, 25(9):999-1002. DOI:10.3760/cma.j.issn.1004-4221.2016.09.022. Wang JF, Li DY,Huang ZL, et al. Simulation and application of 3D printed compensator in electron radiation therapy for Merkel cell carcinoma[J]. Chin J Radiat Oncol,2016, 25(9):999-1002. DOI:10.3760/cma.j.issn.1004-4221.2016.09.022. [8] Ju SG, Kim MK, Hong CS, et al. New technique for developing a proton range compensator with use of a 3-dimensional printer[J]. Int J Radiat Oncol Biol Phys, 2014, 88(2):453-458. DOI:10.1016/j.ijrobp.2013.10.024. [9] Safai S, Bortfeld T, Engelsman M. Comparison between the lateral penumbra of a collimated double-scattered beam and uncollimated scanning beam in proton radiotherapy[J]. Phys Med Biol, 2008, 53(6):1729-1750. DOI:10.1088/0031-9155/53/6/016. [10] Michiels S, Barragán AM, Souris K, et al. Patient-specific bolus for range shifter air gap reduction in intensity-modulated proton therapy of head-and-neck cancer studied with Monte Carlo based plan optimization[J]. Radiother Oncol, 2018, 128(1):161-166. DOI:10.1016/j.radonc.2017.09.006. [11] Kong M, Holloway L. An investigation of central axis depth dose distribution perturbation due to an air gap between patient and bolus for electron beams[J]. Austral Phys Eng Sci Med, 2007, 30(2):111. DOI:10.1007/BF03178415. [12] 张敏,赵波,尹金鹏,等. 新型3D打印组织补偿物的放疗应用研究[J]. 中华放射肿瘤学杂志, 2017, 26(2):210-214. DOI:10.3760/cma.j.issn.1004-4221.2017.02.018. Zhang M, Zhao B, Yin JP, et al. Application of new three-dimensional printed tissue compensators in radiotherapy[J]. Chin J Radiat Oncol,2017, 26(2):210-214. DOI:10.3760/cma.j.issn.1004-4221.2017.02.018. [13] 侯彦杰,于江平,王永强,等.3D打印胸壁硅胶bolus制作及临床前研究[J]. 中华放射肿瘤学杂志, 2018, 27(9):835-838. DOI:10.3760/cma.j.issn.1004-4221.2018.09.010. Hou YJ, Yu JP, Wang YQ, et al. Fabrication and pre-clinical application of patient-specific 3D silicone rubber bolus for chest wall[J]. Chin J Radiat Oncol,2018, 27(9):835-838. DOI:10.3760/cma.j.issn.1004-4221.2018.09.010. [14] Jung J, Song SY, Yoon SM, et al. Verification of accuracy of CyberKnife tumor-tracking radiation therapy using patient-specific lung phantoms[J]. Int J Radiat Oncol Biol Phys, 2015, 92(4):745-753. DOI:10.1016/j.ijrobp.2015.02.055. [15] Ehler ED, Barney BM, Higgins PD, et al. Patient specific 3D printed phantom for IMRT quality assurance[J]. Phys Med Biol, 2014, 59(19):5763-5773. DOI:10.1088/0031-9155/59/19/5763. [16] Hazelaar C, van Eijnatten M, Dahele M, et al. Using 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposes[J]. Med Phys, 2018, 45(1):92-100. DOI:10.1002/mp.12644. [17] Kadoya N, Miyasaka Y, Nakajima Y, et al. Evaluation of deformable image registration between external beam radiotherapy and HDR brachytherapy for cervical cancer with a 3D-printed deformable pelvis phantom[J]. Med Phys, 2017, 44(4):1445-1455. DOI:10.1002/mp.12168. [18] Woods K, Ayan AS, Woollard J, et al. Quality assurance for a six degrees-of-freedom table using a 3D printed phantom[J]. J Appl Clin Med Phys, 2018, 19(1):115-124. DOI:10.1002/acm2.12227. [19] Haefner MF, Giesel FL, Mattke M, et al. 3D-printed masks as a new approach for immobilization in radiotherapy–a study of positioning accuracy[J]. Oncotarget, 2018, 9(5):6490. DOI:10.18632/oncotarget.24032. [20] Pham QVV, Lavallée AP, Foias A, et al. Radiotherapy immobilization mask molding through the use of 3D-printed head models[J]. Technol Cancer Res Treat, 2018, 17:1533033818809051. DOI:10.1177/1533033818809051. [21] 丁继平,涂文勇,胡海生,等.3D打印口腔支架对舌癌术后调强放疗危及器官的剂量学影响[J]. 中华肿瘤防治杂志, 2015, 22(15):1221-1225. Ding JP, Tu WY, Hu HS, et al. Influence on normal tissue dosimetry in intensity-modulated radiotherapy of post-operative lingual carcinoma patients with 3D intraoral stent[J]. Chin J Cancer Prev Treat, 2015, 22(15):1221-1225. [22] Wilke CT, Zaid M, Chung C, et al. Design and fabrication of a 3D–printed oral stent for head and neck radiotherapy from routine diagnostic imaging[J]. 3D Print Med, 2017, 3(1):12. DOI:10.1186/s41205-017-0021-4. [23] Pinnaduwage DS, Cunha JA, Weinberg V, et al. A dosimetric evaluation of using a single treatment plan for multiple treatment fractions within a given applicator insertion in gynecologic brachytherapy[J]. Brachytherapy, 2013, 12(5):487-494. DOI:10.1016/j.brachy.2013.02.003. [24] Cunha JAM, Mellis K, Sethi R, et al. Evaluation of PC-ISO for customized, 3D printed, gynecologic HDR brachytherapy applicators[J]. J Appl Clin Med Phys, 2015, 16(1):246-253. DOI:10.1120/jacmp.v16i1.5168. [25] Sethi R, Cunha A, Mellis K, et al. Clinical applications of custom-made vaginal cylinders constructed using three-dimensional printing technology[J]. J Contemp Brachyther, 2016, 8(3):208-214. DOI:10.5114/jcb.2016.60679. [26] 于浪,连欣,晏俊芳,等.3D打印技术在CT引导宫颈癌术后阴道残端肿瘤近距离治疗中应用[J]. 中华放射肿瘤学杂志, 2016, 25(9):965-967. DOI:10.3760/cma.j.issn.1004-4221.2016.09.013. Yu L, Lian X, Yan JF, et al. Application of 3D printing technology in brachytherapy for vaginal stump tumor after CT-guided cervical carcinoma surgery[J]. Chin J Radiat Oncol,2016, 25(9):965-967. DOI:10.3760/cma.j.issn.1004-4221.2016.09.013. [27] Logar HBZ, Hudej R,egedin B. Development and assessment of 3D-printed individual applicators in gynecological MRI-guided brachytherapy[J]. J Contemp Brachyther, 2019, 11(2):128-136. DOI:10.5114/jcb.2019.84741. [28] Jones EL, Baldion AT, Thomas C, et al. Introduction of novel 3D-printed superficial applicators for high-dose-rate skin brachytherapy[J]. Brachytherapy, 2017, 16(2):409-414. DOI:10.5114/jcb.2019.84741. [29] 王俊杰.3D打印技术在精准粒子植入治疗中的应用[J]. 中华放射医学与防护杂志, 2017, 37(7):481-484. DOI:10.3760/cma.j.issn.0254-5098.2017.07.001. Wang JJ. Application of 3D-printing in accurate seed implantation therapy[J]. Chin J Radiol Med Prot, 2017, 37(7):481-484. DOI:10.3760/cma.j.issn.0254-5098.2017.07.001. [30] Wang J, Zhang F, Guo J, et al. Expert consensus workshop report:guideline for three-dimensional printing template-assisted computed tomography-guided 125I seeds interstitial implantation brachytherapy[J]. J Cancer Res Ther, 2017, 13(4):607-612. DOI:10.4103/jcrt. JCRT_412_17. [31] 吉喆,姜玉良,郭福新,等.3D打印个体化非共面模板辅助放射性粒子植入治疗恶性肿瘤的剂量学验证[J]. 中华放射医学与防护杂志, 2016, 36(9):662-666. DOI:10.3760/cma.j.issn.0254-5098.2016.09.005. Ji Z, Jiang YL, Guo FX, et al. Dosimetry verification of radioactive seed implantation for malignant tumor assisted by 3D printing individual guide template[J]. Chin J Radiol Med Prot, 2016, 36(9):662-666. DOI:10.3760/cma.j.issn.0254-5098.2016.09.005. [32] Jiang Y, Ji Z, Guo F, et al. Side effects of CT-guided implantation of 125I seeds for recurrent malignant tumors of the head and neck assisted by 3D printing non co-planar template[J]. Radiat Oncol, 2018, 13(1):18. DOI:10.1186/s13014-018-0959-4.