The role of long non-coding RNAs in radiation tolerance of cancer stem cells
Yao Zhifeng1, Yao Jianxin2
1 Department of Radiotherapy,The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; 2 Faculty of Medical Technology, Nanjing Vocational Health College, Nanjing 210038, China
Abstract:Cancer stem cells (CSCs) refer to a kind of cells with self-renewal ability and multi-directional differentiation potential inside the tumor. Although only occupying a small part of the whole cancer cells, they are the "original cells" that cause tumorigenesis, spread and recurrence, which is also the root cause of radiotherapy failure. CSCs are virtually resistant to radiotherapy and promote tumor metastasis either in a direct or indirect manner, which are therefore believed to serve as the basis of tumor metastasis. Moreover, the heterogeneity of CSCs may be responsible for the complexity of organ-specific metastasis. Long non-coding RNAs (lncRNAs) are a class of RNA molecules with over 200 nucleotides in length without protein coding potential, which are involved in the initiation and progression of several cancer types and closely related to the radiation tolerance. Recently, lncRNAs related to tumor radiation tolerance and its relationship with CSCs have attracted widespread attention. In this review, lncRNA-mediated regulation of CSCs following radiotherapy and the role of lncRNA in radiation tolerance were summarized.
Yao Zhifeng,Yao Jianxin. The role of long non-coding RNAs in radiation tolerance of cancer stem cells[J]. Chinese Journal of Radiation Oncology, 2020, 29(8): 699-703.
[1] Piao LS, Hur W, Kim TK, et al. CD+133liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma[J]. Cancer Lett, 2012, 315(2):129-137. DOI:10.1016/j.canlet.2011.10.012.
[2] Diehn M, Clarke MF. Cancer stem cells and radiotherapy:New insights into tumor radioresistance[J]. J Natl Cancer Inst, 2006, 98(24):1755-1757. DOI:10.1093/jnci/djj505.
[3] Biswas S, Guix M, Rinehart C, et al. Inhibition of TGF-β with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression[J]. J Clin Invest, 2007, 117(5):1305-1313. DOI:10.1172/JCI30740.
[4] De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression[J]. Nat Rev Cancer, 2013, 13(2):97-110. DOI:10.1038/nrc3447.
[5] De Bacco F, Luraghi P, Medico E, et al. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer[J]. J Natl Cancer Inst, 2011, 103(8):645-661. DOI:10.1093/jnci/djr093.
[6] Fayda M, Isin M, Tambas M, et al. Do circulating long non-coding RNAs (lncRNAs)(LincRNA-p21, GAS 5, HOTAIR) predict the treatment response in patients with head and neck cancer treated with chemoradiotherapy?[J]. Tumour Biol, 2016, 37(3):3969-3978. DOI:10.1007/s13277-015-4189-1.
[7] Zielske SP, Spalding AC, Wicha MS, et al. Ablation of breast cancer stem cells with radiation[J]. Transl Oncol, 2011, 4(4):227-233. DOI:10.1593/tlo.10247.
[8] Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA, 2003, 100(7):3983-3988. DOI:10.1073/pnas.0530291100.
[9] Kreso A, Dick JE. Evolution of the cancer stem cell model[J]. Cell Stem Cell, 2014, 14(3):275-291. DOI:10.1016/j.stem.2014.02.006.
[10] Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells-perspectives on current status and future directions:AACR workshop on cancer stem cells[J]. Cancer Res, 2006, 66(19):9339-9344. DOI:10.1158/0008-5472. CAN-06-3126.
[11] Lee SY, Jeong EK, Ju MK, et al. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation[J]. Mol Cancer, 2017, 16(1):10. DOI:10.1186/s12943-016-0577-4.
[12] Cho YM, Kim YS, Kang MJ, et al. Long-term recovery of irradiated prostate cancer increases cancer stem cells[J]. Prostate, 2012, 72(16):1746-1756. DOI:10.1002/pros.22527.
[13] Al-Assar O, Muschel RJ, Mantoni TS, et al. Radiation response of cancer stem-like cells from established human cell lines after sorting for surface markers[J]. Int J Radiat Oncol Biol Phys, 2009, 75(4):1216-1225. DOI:10.1016/j.ijrobp.2009.07.001.
[14] Ghisolfi L, Keates AC, Hu X, et al. Ionizing radiation induces stemness in cancer cells[J]. PLoS ONE,2012, 7(8):e43628. DOI:10.1371/journal. pone.0043628.
[15] Kang KS, Choi YP, Gao MQ, et al. CD+24ovary cancer cells exhibit an invasive mesenchymal phenotype[J]. Biochem Biophys Res Commun, 2013, 432(2):333-338. DOI:10.1016/j.bbrc.2013.01.102.
[16] Ulitsky I, Bartel DP. LincRNAs:Genomics, evolution, and mechanisms[J]. Cell, 2013, 154(1):26-46. DOI:10.1016/j.cell.2013.06.020.
[17] Huarte M, Guttman M, Feldser D, et al. Large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response[J]. Cell, 2010, 142(3):409-419. DOI:10.1016/j.cell.2010.06.040.
[18] Dimitrova N, Zamudio JR, Jong RM, et al. LincRNA-p21 activates p21 in cis to promote polycomb target gene expression and to enforce the G1/S checkpoint[J]. Mol Cell, 2014, 54(5):777-790. DOI:10.1016/j.molcel.2014.04.025.
[19] Zhai H, Fesler A, Schee K, et al. Clinical significance of long intergenic noncoding RNA-p21 in colorectal cancer[J]. Clin Colorectal Cancer, 2013, 12(4):261-266. DOI:10.1016/j.clcc.2013.06.003.
[20] Wang G, Li Z, Zhao Q, et al. LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/ β-catenin signaling pathway[J]. Oncol Rep, 2014, 31(4):1839-1845. DOI:10.3892/or.2014.3047.
[21] Yang W, Yu H, Shen Y, et al. MiR-146b-5p overexpression attenuates stemness and radioresistance of glioma stem cells by targeting HuR/lincRNA-p21/β-catenin pathway[J]. Oncotarget, 2016, 7(27):41505-41526. DOI:10.18632/oncotarget.9214.
[22] 沈月明,杨巍. 敲低长链基因间非编码RNA-p21对乏氧肿瘤细胞放射敏感性的影响[J]. 中华放射医学与防护杂志, 2016, 36(1):19-23. DOI:10.3760/cma.j.issn.0254-5098.2016.01.003.
Shen YM, Yang W. Effect of long intergenic noncoding RNA-p21 knockdown on radiosensitivity of hypoxic tumor cells[J]. Chin J Radiol Med Prot, 2016, 36(1):19-23. DOI:10.3760/cma.j.issn.0254-5098.2016.01.003.
[23] Heery R, Finn SP, Cuffe S, et al. Long non-coding RNAs:Key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells[J]. Cancers, 2017, 9(4):38. DOI:10.3390/cancers9040038.
[24] Jin C, Yan B, Lu Q, et al. The role of MALAT1/miR-1/slug axis on radioresistance in nasopharyngeal carcinoma[J]. Tumour Biol, 2016, 37(3):4025-4033. DOI:10.1007/s13277-015-4227-z.
[25] Hu L, Wu Y, Tan D, et al. Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2015, 34(1):7. DOI:10.1186/s13046-015-0123-z.
[26] Lu H, He Y, Lin L, et al. Long non-coding RNA MALAT1 modulates radiosensitivity of HR-HPV+ cervical cancer via sponging miR-145[J]. Tumour Biol, 2016, 37(2):1683-1691. DOI:10.1007/s13277-015-3946-5.
[27] 张蕾,胡尔西旦·尼牙孜,迪丽达尔·斯地克,等. 长链非编码RNA MALAT1在宫颈癌血清与组织中的表达差异[J]. 新疆医科大学学报, 2018, 41(4):478-480, 485. DOI:10.3969/j.issn.1009-5551.2018.04.019.
Zhang L, Huerxidan Niyazi, Dilidaer Sidike, et al. The study of differential expression profile RNA MALAT1 in serum and tissue of long chain Non-coding of cervical cancer[J]. J Xinjiang Med Univ, 2018, 41(4):478-480, 485. DOI:10.3969/j.issn.1009-5551.2018.04.019.
[28] Jiao F, Hu H, Han T, et al. Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells[J]. Int J Mol Sci, 2015, 16(4):6677-6693. DOI:10.3390/ijms16046677.
[29] Huang MD, Chen WM, Qi FZ, et al. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2[J]. Mol Cancer, 2015, 14(1):165. DOI:10.1186/s12943-015-0431-0.
[30] Tan J, Qiu K, Li M, et al. Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells[J]. FEBS Lett, 2015, 589(20 Pt B):3175-3181. DOI:10.1016/j.febslet.2015.08.020.
[31] Jiang H, Hu X, Zhang H, et al. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression[J]. Radiat Oncol, 2017, 12(1):65. DOI:10.1186/s13014-017-0802-3.
[32] Zhang Q, Wang Y. HMG modifications and nuclear function[J]. Biochim Biophys Acta, 2010, 1799(1-2):28-36. DOI:10.1016/j.bbagrm.2009.11.009.
[33] Katsushima K, Natsume A, Ohka F, et al. Targeting the notch-regulated non-coding RNA TUG1 for glioma treatment[J]. Nat Commun, 2016, 7:13616. DOI:10.1038/ncomms13616.
[34] Xu N, Papagiannakopoulos T, Pan G, et al. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells[J]. Cell, 2009, 137(4):647-658. DOI:DOI:10.1016/j.cell.2009.02.038.
[35] Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464(7291):1071-1076. DOI:10.1038/nature08975.
[36] Jing L, Yuan W, Ruofan D, et al. HOTAIR enhanced aggressive biological behaviors and induced radio-resistance via inhibiting p21 in cervical cancer[J]. Tumour Biol, 2015, 36(5):3611-3619. DOI:10.1007/s13277-014-2998-2.
[37] Yang XD, Xu HT, Xu XH, et al. Knockdown of long non-coding RNA HOTAIR inhibits proliferation and invasiveness and improves radiosensitivity in colorectal cancer[J]. Oncol Rep, 2016, 35(1):479-487. DOI:10.3892/or.2015.4397.
[38] Hsieh JC, Kodjabachian L, Rebbert ML, et al. A new secreted protein that binds to Wnt proteins and inhibits their activities[J]. Nature, 1999, 398(6726):431-436. DOI:10.1038/18899.
[39] Jiang Y, Li Z, Zheng S, et al. The long non-coding RNA HOTAIR affects the radiosensitivity of pancreatic ductal adenocarcinoma by regulating the expression of Wnt inhibitory factor 1[J]. Tumour Biol, 2016, 37(3):3957-3967. DOI:10.1007/s13277-015-4234-0.
[40] Chen J, Shen Z, Zheng Y, et al. Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating β-catenin mediated by upregulated HOTAIR[J]. Int J Clin Exp Pathol, 2015, 8(7):7878-7886.
[41] Deng J, Yang M, Jiang R, et al. Long non-coding RNA HOTAIR regulates the proliferation, self-renewal capacity, tumor formation and migration of the cancer stem-like cell (CSC) subpopulation enriched from breast cancer cells[J]. PLoS One, 2017, 12(1):e0170860. DOI:10.1371/journal. pone.0170860.
[42] Zhang H, Cai K, Wang J, et al. MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway[J]. Stem Cells, 2014, 32(11):2858-2868. DOI:10.1002/stem.1795.
[43] Dou J, Ni Y, He X, et al. Decreasing lncRNA HOTAIR expression inhibits human colorectal cancer stem cells[J]. Am J Transl Res, 2016, 8(1):98-108.
[44] 李鸣鹤,李守淼,张伟,等. 沉默长链非编码RNA HOTAIR对直肠腺癌细胞放射敏感性的影响[J]. 中华放射肿瘤学杂志,2018,27(12):1097-1100. DOI:10.3760/cma.j.issn.1004-4221.2018.12.015.
Li HM, Li SM, Zhang W, et al. Effect of silencing of long non-coding RNA HOTAIR on radiosensitivity of rectal adenocarcinoma cell lines[J]. Chin J Radiat Oncol, 2018, 27(12):1097-1100. DOI:10.3760/cma.j.issn.1004-4221.2018.12.015.
[45] Dutertre M, Vagner S. DNA-damage response RNA-binding proteins (DDRBPs):Perspectives from a new class of proteins and their RNA targets[J]. J MolBiol, 2017, 429(21):3139-3145. DOI:10.1016/j.jmb.2016.09.019.