An inverse dose optimization algorithm for three-dimensional brachytherapy
Wang Xianliang1, Wang Pei2, Li Churong2, Li Jie2, Kang Shengwei2, Liu Min2, Tang Ting2, Yang Feng2, Hou Qing1
1 Key Laboratory of Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; 2 Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
Abstract:Objective To explore an implementation method and results of an inverse dose optimization algorithm (gradient-based planning optimization, GBPO) in three-dimensional brachytherapy. Methods A standard quadratic objective function was used in the GBPO. The optimization code of GBPO was performed based on LBFGS (Limited memory Broyden Fletcher Goldberg Shanno). Seven cervical cancer patients using different applicators and 15 cervical cancer patients using the Fletcher applicator (Nucletron part#189.730) were retrospectively analyzed. The plan quality of GBPO was firstly assessed by isodose lines, then dose-volume histogram (DVH) parameters of CTV(D100%,V150%) and organs at risk(D0.1cm3,D1.0cm3,D2.0cm3) were used to evaluate the difference among the GBPO, IPSA and Graphic plans. Results For the 7 patients using different applicators, GBPO could optimize the conformal dose distribution, and the DVH parameters of the target and organs at risk were basically the same among the GBPO, IPSA and Graphic plans. For 15 patients using the Fletcher applicator, the difference in DVH parameters between the GBPO and IPSA plans was not statistically significant. There was no remarkable difference in the DVH parameters between the GBPO and Graphic plans, but the D100% of the GBPO plan was significantly higher (P<0.01), and the V150% was significantly lower (P<0.01) than that of the Graphic plan. Conclusions The quality of the GBPO plan is similar to that of the IPSA plan in terms of target coverage and organ protection. The inverse dose optimization algorithm GBPO can be integrated into a three-dimensional brachytherapy treatment planning system.
Wang Xianliang,Wang Pei,Li Churong et al. An inverse dose optimization algorithm for three-dimensional brachytherapy[J]. Chinese Journal of Radiation Oncology, 2020, 29(8): 676-681.
[1] Lessard E, Pouliot J. Inverse planning anatomy-based dose optimization for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function[J]. Med Phys, 2001, 28(5):773-779. DOI:10.1118/1.1368127.
[2] Chajon E, Dumas I, Touleimat M, et al. Inverse planning approach for 3-D MRI-based pulse-dose rate intracavitary brachytherapy in cervix cancer[J]. Int J Radiat Oncol Biol Phys, 2007, 69(3):955-961. DOI:10.1016/j.ijrobp.2007.07.2321.
[3] Trnková P, Pötter R, Baltas D, et al. New inverse planning technology for image-guided cervical cancer brachytherapy:description and evaluation within a clinical frame[J]. Radiother Oncol, 2009, 93(2):331-340. DOI:10.1016/j.radonc.2009.10.004.
[4] 余辉, 张书旭. 宫颈癌后装治疗剂量的调强优化方法[J]. 中国医学物理学杂志, 2014, 31(5):5114-5119. DOI:10.3969/j.issn.1005-202X.2014.05.004.
Yu H, Zhang SX. The dosimetric optimizated method for HDR brachytherapy of cervix cancer[J]. Chin J Med Phys, 2014, 31(5):5114-5119. DOI:10.3969/j.issn.1005-202X.2014.05.004.
[5] 余辉, 张书旭. 后装调强放疗计划系统的软件实现[J]. 中国医疗设备, 2014,(6):18-21. DOI:10.3969/j.issn.1674-1633.2014.06.007.
Yu H, Zhang SX. Software design of inverse planning system for afterloading brachytherapy[J]. Chin Med Dev, 2014,(6):18-21. DOI:10.3969/j.issn.1674-1633.2014.06.007.
[6] Liu DC, Nocedal J. On the limited memory BFGS method for large scale optimization[J]. Mathemat Program, 1989, 45(1-3):503-528. DOI:10.1007/BF01589116.
[7] Byrd RH, Lu P, Nocedal J, et al. A limited memory algorithm for bound constrained optimization[J]. J Sci Comput, 1995, 16(5):1190-1208. DOI:10.1137/0916069.
[8] Cunha A, Siauw T, Hsu IC, et al. A method for restricting intracatheter dwell time variance inhigh-dose-rate brachytherapy plan optimization[J]. Brachytherapy, 2016, 15(2):246-251. DOI:10.1016/j.brachy.2015.10.009.
[9] Potter R, Haie-Meder C, Van Limbergen E, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (Ⅱ):concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology[J]. Radiother Oncol, 2006, 78(1):67-77. DOI:S0167-8140(05)00546-3.
[10] Brahme A. Development of radiation therapy optimization[J]. Acta Oncol, 2000, 39(5):579-595. DOI:10.1080/028418600750013 267.
[11] Jameson MG, Ohanessian L, Batumalai V, et al. Comparison of Oncentra Brachy IPSA and graphical optimisation techniques:a case study of HDR brachytherapy head and neck and prostate plans[J]. JMRS, 2015, 62(2):168–174. DOI:10.1002/jmrs.107.
[12] Jamema SV, Kirisits C, Mahantshetty U, et al. Comparison of DVH parameters and loading patterns of standard loading, manual and inverse optimization for intracavitary brachytherapy on a subset of tandem/ovoid cases[J]. Radiother Oncol, 2010, 97(3):501-506. DOI:10.1016/j.radonc.2010.08.011.
[13] Dinkla AM, Van DLR, Kaljouw E, et al. A comparison of inverse optimization algorithms for HDR/PDR prostate brachytherapy treatment planning[J]. Brachytherapy, 2015, 14(2):279-288. DOI:10.1016/j.brachy.2014.09.006.
[14] Panettieri V, Smith RL, Mason NJ, et al. Comparison of IPSA and HIPO inverse planning optimization algorithms for prostate HDR brachytherapy[J]. J Appl Clin Med Phys, 2014, 15(6):256-266. DOI:10.1120/jacmp.v15i6.5055.
[15] 郎锦义, 王培, 吴大可, 等. 2015年中国大陆放疗基本情况调查研究[J]. 中华放射肿瘤学杂志, 2016, 25(6):541-545. DOI:10.3760/cma.j.issn.1001-4221.2016.06.001.
Lang JY, Wang P, Wu DK, et al. An investigation of the basic situation of radiotherapy in mainland China in 2015[J]. Chin J Radiat Oncol, 2016, 25(6):541-545. DOI:10.3760/cma.j.issn.1001-4221.2016.06.001.
[16] Chen W, Sun K, Zheng R, et al. Cancer incidence and mortality in China, 2014[J]. Chin J Cancer Res, 2018, 30(1):1-12. DOI:10.21147/j.issn.1000-9604.2018.01.01.