Research status of ultrasound-guided radiotherapy for tumors
Sun Hongfei1, Ni Xinye1, Yang Jianhua2
1Department of Radiation Oncology,Affiliated Changzhou No.2 People′s Hospital of Nanjing Medical University/Center for Medical Physics,Nanjing Medical University,Changzhou 210003,China; 2School of Automation,Northwest Polytechnic University,Xi′an 710072,China
Abstract:Image-guided techniques are critical to improving the accuracy of radiotherapy for tumors. Ultrasound images have been gradually applied in the set-up verification of clinical radiotherapy and adaptive radiotherapy because of the real-time,reproducible and non-radiative characteristics. In this paper,the application of ultrasound image-guided technology in radiotherapy was classified and analyzed,and the latest research progress was introduced.
Sun Hongfei,Ni Xinye,Yang Jianhua. Research status of ultrasound-guided radiotherapy for tumors[J]. Chinese Journal of Radiation Oncology, 2020, 29(4): 317-320.
[1] 戴建荣,胡逸民. 图像引导放疗的实现方式[J]. 中华放射肿瘤学杂志,2006,15(2):132-135. DOI:10.3760/j.issn:1004-4221.2006.02.019.
Dai JR,Hu YM. Implementation of image guided radiotherapy[J]. Chin J Radiat Oncol,2006,15(2):132-135. DOI:10.3760/j.issn:1004-4221.2006.02.019.
[2] Kara E,Dirican B,Yazici A,et al. Radiation dose from megavoltage cone beam computed tomography for IGRT[J]. Radiother Oncol,2017,123(1):815-816. DOI:10.1016/s0167-8140(17)31946-1.
[3] 徐寿平. 电子射野影像装置在患者剂量验证方面的研究[D]. 北京:清华大学,2009.
Xu SP. The study of Patient Dose Verification using the Electronic Portal Imaging Device[D]. Beijing:Tsinghua University,2009.
[4] Yan H,Zhen X,Cerviño L,et al. Progressive cone beam CT dose control in image-guided radiation therapy[J]. Med Phys,2013,40(6):060701-060702. DOI:10.1118/1.4804215.
[5] Meroni S,Mongioj V,Giandini T,et al. EP-1822:limits and potentialities of the use of CBCT for dose calculation in adaptive radiotherapy[J]. Radiother Oncol,2016,119:S854-S855. DOI:10.1016/s0167-8140(16)33073-0.
[6] Zhang J,Zhang W,Lu J. A correction algorithm for kilovoltage cone-beam computed tomography dose calculations in cervical cancer patients[J]. Med Phys,2015,42(6):3242-3252. DOI:10.1118/1.4924002.
[7] 李定杰. 滑轨CT图像引导技术在胸中上段食管癌放疗中的应用研究[J]. 中华放射医学与防护杂志,2013,33(6):623-625. DOI:10.3760/cma.j.issn.0254-5098.2013.06.013.
Li DJ. Application of slide CT image guided technique in radiotherapy of upper middle thoracic esophageal cancer[J]. Chin J Radiol Med Protect,2013,33(6):623-625. DOI:10.3760/cma.j.issn.0254-5098.2013.06.013.
[8] Hu Y,Byrne M,Archibaldheeren B,et al. A feasibility study on the use of TomoTherapy megavoltage computed tomography images for palliative patient treatment planning[J]. J Med Phys,2017,42(3):163-170. DOI:10.4103/jmp. JMP_32_17.
[9] Robinson D,Liu D,Steciw S,et al. An evaluation of the Clarity 3D ultrasound system for prostate localization[J]. J Appl Clin Med Phys,2012,13(4):100-112. DOI:10.1120/jacmp.v13i4.3753.
[10] Vray D,Brusseau E,Detti V,et al. Medical imaging based on magnetic fields and ultrasounds[A]//Vray D,Brusseau E,Valérie Detti,et al. Ultrasound medical imaging[M]. Lyon:John Wiley & Sons,Inc,2014:1-72.
[11] Kazemirad S,Bernard S,Hybois S,et al. Ultrasound shear wave viscoelastography:model-independent quantification of the complex shear modulus[J]. IEEE Trans Ultra Ferr Freq Cont,2016,63(9):1399-1408. DOI:10.1109/TUFFC.2016.2583785.
[12] Ipsen S. Ultrasound guidance in radiotherapy-renaissance through innovation[J]. Phys Med,2018,52(1):37-40. DOI:10.1016/j.ejmp.2018.06.166.
[13] Panakis N,Mcnair HA,Christian JA,et al. Defining the margins in the radical radiotherapy of non-small cell lung cancer (NSCLC) with active breathing control (ABC) and the effect on physical lung parameters[J]. Radiother Oncol,2008,87(1):65-73. DOI:10.1016/j.radonc.2007.12.012.
[14] Rubin JM,Feng M,Hadley SW,et al. Potential use of ultrasound speckle tracking for motion management during radiotherapy[J]. J Ultra Med,2012,31(3):469-481. DOI:10.7863/jum.2012.31.3.469.
[15] Schlosser J,Salisbury K,Hristov D. Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery[J]. Med Phys,2010,37(12):6357-6367. DOI:10.1118/1.3515457.
[16] Davide F,Skadi VDM,Jeffrey B,et al. Review of ultrasound image guidance in external beam radiotherapy:I.treatment planning and inter-fraction motion management[J]. Phys Med Biol,2015,60(3):77-114. DOI:10.1088/0031-9155/60/3/R77.
[17] De Luca V,Banerjee J,Hallack A,et al. Evaluation of 2D and 3D ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy margins[J]. Med Phys,2018,45(11):4986-5003. DOI:10.1002/mp.13152.
[21] Sen HT,Bell MA L,Zhang Y,et al. System integration and preliminary in-vivo experiments of a robot for ultrasound guidance and monitoring during radiotherapy[A]//International Conference on Advanced Robotics[C]. Turkey:Proc Int Conf Adv Robot,2015:53-59.
[19] Li M,Ballhausen H,Hegemann NS,et al. Comparison of prostate positioning guided by three-dimensional transperineal ultrasound and cone beam CT[J]. Strahlenther Onkol,2017,193(3):221-228. DOI:10.1007/s00066-016-1084-7.
[20] Salter BJ,Szegedi M,Tward J,et al. PO-0895:3D transperineal ultrasound image guidance methods for prostate SBRT radiotherapy treatment[J]. Radiother Oncol,2015,115(3):S460-S460. DOI:10.1016/s0167-8140(15)40887-4.
[21] O′Shea T,Bamber J,Fontanarosa D,et al. Review of ultrasound image guidance in external beam radiotherapy part Ⅱ:intra-fraction motion management and novel applications[J]. Phys Med Biol,2016,61(8):R90-R137. DOI:10.1088/0031-9155/61/8/r90.
[22] Baker M,Behrens CF. Determining intrafractional prostate motion using four dimensional ultrasound system[J]. BMC Cancer,2016,16(1):484-486. DOI:10.1186/s12885-016-2533-5.
[23] Sihono DSK,Vogel L,Wei BC,et al. A 4D ultrasound real-time tracking system for external beam radiotherapy of upper abdominal lesions under breath-hold[J]. Strahlenther Onkol,2017,193(3):213-220. DOI:10.1007/s00066-016-1076-7.
[24] Sihono DSK,Weiss C,Vogel L,et al. Evaluation of a 4D ultrasound (US) real-time tracking system for SBRT of upper abdominal lesions in healthy volunteers under computer-controlled breath hold:a correlation of ultrasound and surface motion data[J]. Int J Radiat Oncol Biol Phys,2016,96(2):S63-S63. DOI:10.1016/j.ijrobp.2016.06.162.
[25] Su L,Iordachita I,Zhang Y,et al. Feasibility study of ultrasound imaging for stereotactic body radiation therapy with active breathing coordinator in pancreatic cancer[J]. J Appl Clin Med Phys,2017,18(4):84-96. DOI:10.1002/acm2.12100.
[26] Ipsen S,Bruder R,O′Brien R,et al. Online 4D ultrasound guidance for real-time motion compensation by MLC tracking[J]. Med Phys,2016,43(10):5695-5704. DOI:10.1118/1.4962932.
[27] Cao X,Yang J,Gao Y,et al. Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis[J]. Med Imag Anal,2017,41(1):18-31. DOI:10.1016/j.media.2017.05.004.
[28] Nie D,Trullo R,Lian J,et al. Medical image synthesis with deep convolutional adversarial networks[J]. IEEE Trans Biomed Eng,2018,65(12):2720-2730. DOI:10.1109/TBME.2018.2814538.
[29] Andreasen D,Van LK,Edmund JM. A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis[J]. Med Phys,2016,43(8):4742-4750. DOI:10.1118/1.4958676.
[30] Nesvacil N,Schmid MP,Pötter R,et al. Combining transrectal ultrasound and CT for image-guided adaptive brachytherapy of cervical cancer:proof of concept[J]. Brachytherapy,2016,15(6):839-844. DOI:10.1016/j.brachy.2016.08.009.
[31] Vand MS,Camps SM,van Elmpt WJ,et al. Simulation of pseudo-CT images based on deformable image registration of ultrasound images:a proof of concept for transabdominal ultrasound imaging of the prostate during radiotherapy[J]. Med Phys,2016,43(4):1913-1920. DOI:10.1118/1.4944064.
[32] Camps SM,Vand MS,Verhaegen F,et al. Various approaches for pseudo-CT scan creation based on ultrasound to ultrasound deformable image registration between different treatment time points for radiotherapy treatment plan adaptation in prostate cancer patients[J]. Biomed Phys Eng Exp,2016,2(3):035018-035019. DOI:10.1088/2057-1976/2/3/035018.
[33] Sun H,Xie K,Gao L,et al. Research on pseudo-CT imaging technique based on an ultrasound deformation field with binary mask in radiotherapy[J]. Medicine,2018,97(38):1-7. DOI:10.1097/MD.0000000000012532.
[34] Sun H,Lin T,Xie K,et al. Imaging study of pseudo-CT images of superposed ultrasound deformation fields acquired in radiotherapy based on step-by-step local registration[J]. Med Biol Eng Comp,2018,57(3):643-651. DOI:10.1007/s11517-018-1912-2.
[35] Boda-Heggemann J,Fleckenstein J,Lohr F,et al. Multiple breath-hold CBCT for online image guided radiotherapy of lung tumors:simulation with a dynamic phantom and first patient data[J]. Radiother Oncol,2011,98(3):309-316. DOI:10.1016/j.radonc.2011.01.019.
[36] Pang EPP,Knight K,Hussain A,et al. Reduction of intra-fraction prostate motion–Determining optimal bladder volume and filling for prostate radiotherapy using daily 4D TPUS and CBCT[J]. Tech Innovat Patient Supp Radiat Oncol,2018,5(1):9-15. DOI:10.1016/j.tipsro.2018.01.003.
[37] Westendorp H,Hoekstra CJ,Immerzeel JJ,et al. Cone-beam CT-based adaptive planning improves permanent prostate brachytherapy dosimetry:an analysis of 1266 patients[J]. Med Phys,2017,44(4):1257-1267. DOI:10.1002/mp.12156.