1Department of Radiation Oncology,The First Affiliated Hospital,University of Science and Technology of China West District,Hefei 230001,China; 2National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230001,China; 3Department of Engineering and Applied Physics, School of Physical Science, University of Science and Technology of China, Hefei 230001 China
Abstract:Objective To evaluate the feasibility of utilizing dose-volume histogram (DVH) prediction models of organs at risk (OARs) to deliver automatic treatment planning of prostate cancer. Methods The training set included 30 cases randomly selected from a database of 42 cases of prostate cancer receiving treatment planning. The bladder and rectum were divided into sub-volumes (Ai) of 3 mm in layer thickness according to the spatial distance from the boundary of planning target volume (PTV). A skewed normal Gaussian function was adopted to fit the differential DVH of Ai,and a precise mathematical model was built after optimization. Using the embedded C++ subroutine of Pinnacle script,the volume of each Ai of the remaining validation set for 12 patients was obtained to predict the DVH parameters of these OARs,which were used as the objective functions to create personalized Pinnacle script. Finally,automatic plans were generated using the script. The dosimetric differences among the original clinical planning,predicted value and the automatic treatment planning were statistically compared with paired t-test. Results DVH residual analysis demonstrated that predictive volume fraction of the bladder and rectum above 6 000 cGy were lower than those of the original clinical planning. The automatic treatment planning significantly reduced the V70,V60,V50 of the bladder and the V70 and V60 of the rectum than the original clinical planning (all P<0.05),the coverage and conformal index (CI) of PTV remained unchanged,and the homogeneity index (HI) was slightly decreased with no statistical significance (P>0.05). Conclusion The automatic treatment planning of the prostate cancer based on the DVH prediction models can reduce the irradiation dose of OARs and improve the treatment planning efficiency.
Zhou Jieping,Peng Zhao,Song Yuchen et al. The study of automatic treatment planning of prostate cancer based on DVH prediction models of organs at risk[J]. Chinese Journal of Radiation Oncology, 2019, 28(7): 536-542.
[1]Nelms BE,Robinson G,Markham J,et al. Variation in external beam treatment plan quality:An inter-institutional study of planners and planning systems[J]. Pract Radiat Oncol,2012,2(4):296-305. DOI:10.1016/j.prro.2011.11.012. [2]任信信,戴建荣,张岳,等. 基于专家库的γ射线立体定向放疗计划优化方法[J]. 中国医学物理学杂志,2015,1(3):301-305. DOI:10.3969/j.issn.1005-202X.2015.03.001. Ren XX,Dai JR,Zhang Y,et al. Planning optimization method based on expert database for γ ray stereotactic radiotherapy[J]. Chin J Med Phys,2015,1(3):301-305. DOI:10.3969/j.issn.1005-202X.2015.03.001. [3]Yuan L,Wu QJ,Yin FF,et al. Incorporating single-side sparing in models for predicting parotid dose sparing in head and neck IMRT[J]. Med Phys,2014,41(2):17-28. DOI:10.1118/1.4862075. [4]Zhu X,Ge Y,Li T,et al. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning[J]. Med Phys,2011,38(2):719-726. DOI:10.1118/1.3539749. [5]Wu BB,Ricchetti F,Sanguineti G,et al. Patient geometry-driven information retrieval for IMRT treatment plan quality control[J]. Med Phys,2009,36(12):5497-5505. DOI:10.1118/1.3253464. [6]Wu BB,Pang D,Lei S,et al. Improved robotic stereotactic body radiation therapy plan quality and planning efficacy for organ-confined prostate cancer utilizing overlap-volume histogram-driven planning methodology[J]. Radiother Oncol,2014,112(2):221-226. DOI:10.1016/j.radonc.2014.07.009. [7]Wu BB,McNutt T,Zahurak M,et al. Fully automated simultaneous integrated boosted-intensity modulated radiation therapy treatment planning is feasible for head-and-neck cancer:A prospective clinical study[J]. Int J Radiat Oncol Biol Phys,2012,84(5):e647-653. DOI:10.1016/j.ijrobp.2012.06.047. [8]Wu BB,Kusters M,Kunze-Busch M,et al. Cross-institutional knowledge-based planning (KBP) implementation and its performance comparison to auto-planning engine (APE)[J]. Radiother Oncol,2017,123(1):57-62. DOI:10.1016/j.radonc.2017.01.012. [9]Song T,Li N,Zarepisheh M,et al. An automated treatment plan quality control tool for intensity-modulated radiation therapy using a voxel-weighting factor-based re-optimization algorithm[J]. PloS One,2016,11(3):e0149273. DOI:10.1371/journal.pone.0149273. [10]Song T,Staub D,Chen M,et al. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy[J]. Phys Med Biol,2015,60(21):8213-8217. DOI:10.1088/0031-9155/60/21/8213. [11]Fan J,Wang J,Hu WG,et al. Iterative dataset optimization in automated planning:Implementation for breast and rectal cancer radiotherapy[J]. Med Phys,2017,44(6):2515-2531. DOI:10.1002/mp.12232. [12]范嘉伟,王佳舟,胡伟刚. 基于核密度估计的自动计划研究[J]. 中华放射肿瘤学杂志,2017,26(6):661-666. DOI:10.3760/cma.j.issn.1004-4221.2017.06.012. Fan JW,Wang JZ,Hu WG. A study of automatic treatment planning based on kernel density estimation[J]. Chin J Radiat Oncol,2017,26(6):661-666. DOI:10.3760/cma.j.issn.1004-4221.2017.06.012. [13]Appenzoller LM,Michalski JM,Thorstad WL,et al. Predicting dose-volume histograms for organs-at-risk in IMRT planning[J]. Med Phys,2012,39(12):7446-7461. DOI:10.1118/1.4761864. [14]Van′t Riet A,Mak AC,Moerland MA,et al. A conformation number to quantify the degree of comfomality in brachytherapy and external beam irradiation beam irradiation:application to the prostate[J]. Int J Radiat Oncol Biol Phys,1997,37(3):731-736. [15]Hodapp N. The ICRU Report 83:prescribing,recording and reporting photon-beam intensity modulated radiation therapy (IMRT)[J]. Strahlenther Onkol,2012,181(1):97-99. DOI:10.1007/s00066-011-0015-x. [16]Chanyavanich V,Das SK,Lee WR,et al. Knowledge-based IMRT treatment planning for prostate cancer[J]. Med Phys,2011,38(5):2515-2522. DOI:10.1118/1.3574874. [17]Potrebko PS,McCurdy BM,ButlerJB,et al. A simple geometric algorithm to predict optimal starting gantry angles using equiangular-spaced beams for intensity modulated radiation therapy of prostate cancer[J]. Med Phys,2007,34(10):3951-3961. DOI:10.1118/1.2775685. [18]Yuan L,Ge Y,Wu QJ,et al. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans[J]. Med Phys,2012,39(11):6868-6878. DOI:10.1118/1.4757927. [19]Sheng Y,Li T,Wu QJ,et al. Atlas-guided prostate intensity modulated radiation Therapy (IMRT) planning[J]. Phys Med Biol,2015,60(18):7277-91. DOI:10.1088/0031-9155/60/18/7277. [20]Shiraishi S,Moore KL. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy[J]. Med Phys,2016,43(1):378-87. DOI:10.1118/1.4938583. [21]Varian Medical Systems. DVH estimation models for Rapid Plan[A]//Eclipse photon and electron instruction for use[M]. Palo Alto:CA,2014:183-204. [22]Lian J,Yuan L,Ge Y,et al. Modeling the dosimetry of organ-at-risk in head and neck IMRT planning:an intertechnique and interinstitutional study[J]. Med Phys,2013,40(12):121704. DOI:10.1118/1.4828788. [23]Wang Y,Heijmen BJM,Petit SF. Prospective clinical validation of independent DVH prediction for plan QA in automatic treatment planning for prostate cancer patients[J]. Radiother Oncol,2017,125(3):500-506. DOI:10.1016/j.radonc.2017.09.021. [24]Zarepisheh M,Shakourifar M,Trigila G,et al. A moment-based approach for DVH-guided radiotherapy treatment plan optimization[J]. Phys Med Biol,2013,58(6):1869-87. DOI:10.1088/0031-9155/58/6/1869.