Abstract: Radiotherapy is one of the most important treatments of high-grade gliomas (HGG).Currently,there has been no consensus on the standards for the delineation of the gross tumor volume (GTV) based on the simulated computed tomography (CT) scanning and conventional magnetic resonance imaging (MRI).As the radiological technology advances,researchers have found that the application of multimodal MRI including 1H magnetic resonance spectroscopy (1H-MRS),blood oxygenation level dependent functional MRI (BOLD-fMRI),diffusion-weighted MRI (DWI) and diffusion tensor imaging (DTI) can evaluate the range of HGG invasion and locate the surrounding vital tissues,thereby serving as a supplement for the delineation of target volume and protection of organs at risk. Moreover,multimodal MRI can be utilized to evaluate the clinical efficacy of radiotherapy,detect the radiation-induced injury and differentiate the progressive disease from pseudoprogression. In this article,the application of multimodal MRI in the postoperative radiotherapy for patients with high-grade glioma was reviewed.
Zha Yilin,Xu Xiaoting. The application of multimodal MRI in radiotherapy for patients with high-grade glioma[J]. Chinese Journal of Radiation Oncology, 2019, 28(3): 226-229.
[1] Niyazi M,Brada M,Chalmers AJ,et al. ESTRO-ACROP guideline"target delineation of glioblastomas"[J].Radiother Oncol,2016,118(1):35-42.DOI:10.1007/978-3-211-99481-8_4. [2] 郎锦义.胶质瘤放疗中国专家共识(2017)中华医学会放射肿瘤治疗学分会[J].中华放射肿瘤学杂志,2018,27(2):123-131.DOI:10.3760/cma.j.issn.1004-4221.2018.02.001. Lang JY.Chinese expert consensus on glioma radiotherapy (2017) Chinese medical association radiation oncology therapy branch[J].Chin J Radiat Oncol,2018,27(2):123-131.DOI:10.3760/cma.j.issn.1004-4221.2018.02.001. [3] Xu YJ,Cui Y,Li HX,et al. Noninvasive evaluation of radiation-enhanced glioma cells invasiveness by ultra-high-field (1) H-MRS in vitro[J].Magn Res Imag,2016,34(8):1121.DOI:10.1016/j.mri.2016.05.009. [4] Zhang Z,Zeng Q,Liu Y,et al. Assessment of the intrinsic radiosensitivity of glioma cells and monitoring of metabolite ratio changes after irradiation by 14.7-T high-resolution H MRS.[J].Nmr Biomed,2014,27(5):547-552.DOI:10.1002/nbm.3091. [5] Pirzkall A,Mcknight TR,Graves EE,et al. MR-spectroscopy guided target delineation for high-grade gliomas[J].Int J Radiat Oncol Biol Phys,2001,50(4):915-928.DOI:10.1016/s0360-3016(01)01548-6. [6] Chang J,Thakur S,Perera G,et al. Image-fusion of MR spectroscopic images for treatment planning of gliomas[J].Med Phys,2006,33(1):32-40.DOI:10.1118/1.2128497. [7] Narayana A,Chang J,Thakur S,et al. Use of MR spectroscopy and functional imaging in the treatment planning of gliomas.[J].Br J Radiol,2007,80(953):347.DOI:10.1016/j.ijrobp.2004.06.178. [8] Chang J,Narayana A.Functional MRI for radiotherapy of gliomas[J].Technol Cancer Res Treat,2010,9(4):347.DOI:10.1177/153303461000900405. [9] Tolia M,Verganelakis D,Tsoukalas N,et al. Prognostic value of MRS metabolites in postoperative irradiated high grade gliomas[J].Biomed Res Int,2015,2015(10).DOI:10.1155/2015/341042. [10] Zhang H,Ma L,Wang Q,et al. Role of magnetic resonance spectroscopy for the differentiation of recurrent glioma from radiation necrosis:a systematic review and meta-analysis[J].Eur J Radiol,2014,83(12):2181-2189.DOI:10.1155/2015/341042. [11] Kazda T,Bulik M,Pospisil P,et al. Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma:Single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging[J].Neuroimag Clin,2016,11(C):316-321.DOI:10.1016/j.nicl.2016.02.016. [12] Crain ID,Elias PS,Chapple K,et al. Improving the utility of 1 H-MRS for the differentiation of glioma recurrence from radiation necrosis[J].J Neuro-Oncol,2017.DOI:10.1007/s11060-017-2407-y. [13] Chang J,Kowalski A,Hou B,et al. Feasibility study of intensity-modulated radiotherapy (IMRT) treatment planning using brain functional MRI[J].Med Dosime,2008,33(1):42-47.DOI:10.1016/j.meddos.2007.05.002. [14] 王明磊,刘子姗,郭艳红,等.BOLD-fMRI用于邻近大脑初级运动皮层脑胶质瘤术后调强放疗的可行性[J].中国医学影像技术,2015,31(2):206-210.DOI:10.13929/j.1003-3289.2015.02.013. Wang ML,Liu ZS,Guo YH,et al. BOLD-FMRI feasibility of postoperative intensity modulated radiotherapy for primary motor cortical glioma in adjacent brain[J].Chin Med Imag Technol,2015,31(2):206-210.DOI:10.13929/j.1003-3289.2015.02.013. [15] 倪春霞,汪洋,盛晓芳,等.应用 DWI 和 DTI 勾画高级别胶质瘤术后放疗靶区的初步研究[J].临床神经外科杂志,2015(3):223-226.DOI:10.3969/j.issn. DOI:1672-7770.2015.03.018. Ni CX,0Wang Y,Sheng XF,et al. Preliminary study on the target area of radiotherapy for high-grade gliomas by DWI and DTI[J].J Clin Neurosurg,2015(3):223-226.DOI:10.3969/j.issn.1672-7770.2015.03.018. [16] 陈红.磁共振弥散成像对脑肿瘤周水肿区的诊断价值[J].中国实验诊断学,2007,11(12):1625-1627.DOI:10.3969/j.issn.1007-4287.2007.12.019. Chen H.Diagnostic value of magnetic resonance dispersion imaging in peripheral edema area of brain tumor[J].Chin Exper Diagnost,2007,11(12):1625-1627.DOI:10.3969/j.issn.1007-4287.2007.12.019. [17] Park JY,Suh TS,Lee JW,et al. Dosimetric effects of magnetic resonance imaging-assisted radiotherapy planning:dose optimization for target volumes at high risk and analytic radiobiological dose evaluation[J].J Korean Med Sci,2015,30(10):1522-1530.DOI:10.3969/j.issn.1007-4287.2007.12.019. [18] Shih LY,Huang CF,Wu JH,et al. MR perfusion weighted imaging combined with MR diffusion weighted imaging in differentiating recurrent cerebral gliomas and radiation injury[J].J Chin Med Imag,2013,100(100):2387-2392.DOI:10.1182/blood-2002-01-0195. [19] Masch WR,Wang PI,Chenevert TL,et al. Comparison of Diffusion tensor imaging and magnetic resonance perfusion imaging in differentiating recurrent brain neoplasm from radiation necrosis[J].Acad Radiol,2016,23(5):569.DOI:10.1016/j.acra.2015.11.015. [20] Zhang H,Ma L,Shu C,et al. Diagnostic accuracy of diffusion MRI with quantitative ADC measurements in differentiating glioma recurrence from radiation necrosis[J].J Neurol Sci,2015,351(1-2):65.DOI:10.1016/j.jns.2015.02.038. [21] 舒彩锟,全冠民,袁涛,等.多b值DWI在脑胶质瘤治疗后近期评价中的应用[J].中国医学影像技术,2017,33(8):1190-1196.DOI:10.13929/j.1003-3289.201610031. Shu CK,Quan GM,Yuan T,et al. Application of multiple B value DWI in recent evaluation after treatment of glioma[J].Chin Med Imag Technol,2017,33(8):1190-1196.DOI:10.13929/j.1003-3289.201610031. [22] 谢璞,杨艳芳,胡德志,等.高b值DWI对脑胶质瘤术后综合治疗后早期疗效的价值研究[J].医学影像学杂志,2014(7):1116-1119. Xie P,Yang YF,Hu DZ,et al. Study on the value of high B value DWI in the early curative effect after postoperative comprehensive treatment of glioma[J].J Med Imag,2014(7):1116-1119. [23] Jena R,Price SC,Jefferies SJ,et al. Diffusion tensor imaging:possible implications for radiotherapy treatment planning of patients with high-grade glioma[J].Clin Oncol,2005,17(8):581-590.DOI:10.1016/j.clon.2005.04.012. [24] Berberat J,Mcnamara J,Remonda L,et al. Diffusion tensor imaging for target volume definition in glioblastomamultiforme[J].Strahlenther Onkol,2014,190(10):939-943.DOI:10.1007/s00066-014-0676-3. [25] Hathout L,Patel V.Estimating subthreshold tumor on MRI using a 3D-DTI growth model for GBM:an adjunct to radiation therapy planning[J].Oncol Rep,2016,36(2).DOI:10.3892/or.2016.4878. [26] Jensen MB,Guldberg TL,Harbll A,et al. Diffusion tensor magnetic resonance imaging driven growth modeling for radiotherapy target definition in glioblastoma[J].Acta Oncol,2017,1.DOI:10.1080/0284186X.2017.1374559. [27] Wang M,Ma H,Wang X,et al. Integration of BOLD-fMRI and DTI into radiation treatment planning for high-grade gliomas located near the primary motor cortexes and corticospinaltracts[J].Radiat Oncol,2015,10(1):64.DOI:10.1186/s13014-015-0364-1. [28] Kassubek R,Gorges M,Westhoff MA,et al. Cerebral microstructural alterations after radiation therapy in high-grade glioma:a diffusion tensor imaging-based study[J].Front Neurol,2017,8.DOI:10.3389/fneur.2017.00286. [29] Nagesh V,Tsien CI,Chenevert TL,et al. Radiation-induced changes in normal appearing white matter in patients with cerebral tumors:a diffusion tensor imaging study[J].Int J Radiat Oncol Biol Phys,2008,70(4):1002-1010.DOI:10.1016/j.ijrobp.2007.08.020.