Abstract:The radiotherapy treatment planning system (RTPS) is one of the core equipment used in implementing radiotherapy. With the advancement of radiotherapy technology, the functionality of the RTPS has become increasingly complex. According to the reports from the International Atomic Energy Agency (IAEA) regarding errors and accidents in radiotherapy, a significant proportion of them are caused by inadequate quality assurance or improper use of the RTPS. The quality assurance of the radiotherapy RTPS is the responsibility of medical physicists, which is essential for ensuring the safety and quality of radiotherapy. This guideline primarily provides guidance to medical physicists in carrying out their work and fulfilling their responsibilities. The content of the guideline covers the requirements on institutions, organizations, personnel involved in the quality assurance of the RTPS, and equipment, acceptance testing, commissioning, routine quality assurance of the RTPS, as well as general requirements for system management and safety. It is recommended that each institution refers to this guideline and develops its own programs for quality assurance practices of the radiotherapy RTPS to ensure proper application.
National Cancer Center / National Cancer Quality Control Center. Quality assurance guideline of radiotherapy treatment planning system for high energy photon external beam irradiation[J]. Chinese Journal of Radiation Oncology, 2023, 32(8): 665-674.
[1] Das IJ, Cheng CW, Watts RJ, et al.Accelerator beam data commissioning equipment and procedures: report of the TG-106 of the Therapy Physics Committee of the AAPM[J]. Medical physics, 2008,35(9): 4186-4215. DOI: 10.1118/1.2969070. [2] Gerbi BJ, Antolak JA, Deibel FC, et al.Recommendations for clinical electron beam dosimetry: supplement to the recommendations of Task Group 25[J]. Med Phys, 2009,36(7):3239-3279. DOI: 10.1118/1.3125820. [3] Low DA, Moran JM, Dempsey JF, et al.Dosimetry tools and techniques for IMRT[J]. Med Phys, 2011,38(3): 1313-1338. DOI: 10.1118/1.3514120. [4] Benedict S, Schlesinger D, Goetsch S, et al.Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy[M]. Boca Raton: CRC Press, Taylor & Francis Group, 2014. [5] LoSasso T, Chui CS, Ling CC. Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy[J]. Med Phys, 1998,25(10):1919-1927. DOI: 10.1118/1.598381. [6] International Atomic Energy Agency. Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer[R]. Vienna: Intrnational Atomic Enrgy Agncy, 2004. [7] Mutic S, Palta JR, Butker EK, et al.Quality assurance for computed-tomography simulators and the computed- tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66[J]. Med Phys, 2003, 30(10):2762-2792. DOI: 10.1118/1.1609271. [8] Papanikolaou N, Stathakis S.Dose-calculation algorithms in the context of inhomogeneity corrections for high energy photon beams[J]. Med Phys, 2009,36(10):4765-4775. DOI: 10.1118/1.3213523. [9] Carrasco P, Jornet N, Duch MA, et al.Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium[J]. Med Phys, 2004,31(10):2899-2911. DOI: 10.1118/1.1788932. [10] Molineu A, Hernandez N, Nguyen T, et al.Credentialing results from IMRT irradiations of an anthropomorphic head and neck phantom[J]. Med Phys, 2013,40(2):022101. DOI: 10.1118/1.4773309. [11] Cadman P, McNutt T, Bzdusek K. Validation of physics improvements for IMRT with a commercial treatment- planning system[J]. J Appl Clin Med Phys, 2005,6(2):74-86. DOI: 10.1120/jacmp.v6i2.2083. [12] Ezzell GA, Burmeister JW, Dogan N, et al.IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119[J]. Medical physics, 2009,36(11):5359-5373. DOI: 10.1118/1.3238104. [13] Nelms BE, Robinson G, Markham J, et al.Variation in external beam treatment plan quality: an inter- institutional study of planners and planning systems[J]. Pract Radiat Oncol, 2012,2(4):296-305. DOI: 10.1016/j.prro.2011.11.012. [14] Kry SF, Alvarez P, Molineu A, et al.Algorithms used in heterogeneous dose calculations show systematic differences as measured with the Radiological Physics Center's anthropomorphic thorax phantom used for RTOG credentialing[J]. Int J Radiat Oncol Biol Phys, 2013,85(1):e95-e100. DOI: 10.1016/j.ijrobp.2012.08.039. [15] 符贵山, 戴建荣, 徐英杰, 等. 调强放疗计划系统的剂量学特性测试方法[J].中华放射肿瘤学杂志,2007,16(6):455-460. DOI: 10.3760/j.issn:1004-4221.2007.06.012. Fu GS, Dai JR, Xu YJ, et al.Dosimetric commissioning for treatment planning system of intensity modulated radiation therapy module[J].Chin J Radiat Oncol,2007,16(6):455-460. DOI: 10.3760/j.issn:1004-4221.2007.06.012. [16] 陈利, 陈立新, 黄劭敏, 等. 放射治疗计划系统剂量跳数计算的独立验证[J].癌症,2010,29(2):234-239. Chen L, Chen LX, Huang SM, et al.Independent verification of monitor unit calculation for radiation treatment planning system[J]. Chin J Cancer,2010,29(2):234-239. [17] 杨瑞杰, 张喜乐, 谢耀钦, 等. Axesse 加速器实施 VMAT 的主要性能测试[J].中华放射肿瘤学杂志,2016,(3):260-265. DOI: 10.3760/cma.j.issn.1004-4221.2016.03.014. Yang RJ, Zhang XL, Xie YQ, et al.Commissioning of Axesse accelerator for volumetric modulated arc therapy[J]. Chin J Radiat Oncol,2016,(3):260-265. DOI: 10.3760/cma.j.issn.1004-4221.2016.03.014. [18] Pan Y, Yang R, Li J, et al.Film-based dose validation of Monte Carlo algorithm for Cyberknife system with a CIRS thorax phantom[J]. J Appl Clin Med Phys, 2018,19(3):142-148. DOI: 10.1002/acm2.12314. [19] 杨瑞杰, 王俊杰, 张喜乐, 等. 多叶准直器透射对调强放疗剂量计算准确性影响观察[J].中华放射肿瘤学杂志,2013,22(2):157-160. DOI: 10.3760/cma.j.issn.1004-4221.2013.02.020. Yang RJ, Wang JJ, Zhang XL, et al.Dosimetric effect of multi-leaf collimator transmission on intensity- modulated radiation therapy[J].Chin J Radiat Oncol,2013,22(2):157-160. DOI: 10.3760/cma.j.issn.1004-4221.2013.02.020.