Abstract:The gynecological malignancy has a high incidence and mortality. More efficient treatment methods still need to be explored to improve the survival benefits. Artificial intelligence (AI) aims to intelligently process the original problems by simulating the thinking way of human brain. It has obtained significant progress in gynecological malignancy, with great potential in the field of cancer diagnosis and treatment. This paper reviews the application of AI in the diagnosis and treatment of gynecological malignancy, and mainly introduces the research progress on AI in the radiotherapy. This paper mainly focuses on the key issues such as automatic delineation, dose prediction, radiotoxicity prediction and efficacy prediction, and discusses the current benefits and limitations of AI in radiotherapy of gynecological malignancy.
Du Ming,Liu Xiaoxia,Xu Congjian et al. Research progress on application of artificial intelligence in radiotherapy for gynecological malignancy[J]. Chinese Journal of Radiation Oncology, 2022, 31(7): 671-674.
[1] Siegel RL, Miller KD, Jemal A.Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590.
[2] Chen WQ, Zheng RS, Baade PD, et al.Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338.
[3] Wu DH, Mayr NA, Karatas Y, et al.Interobserver variation in cervical cancer tumor delineation for image-based radiotherapy planning among and within different specialties[J]. J Appl Clin Med Phys, 2005, 6(4): 106-110. DOI: 10.1120/jacmp.v6i4.2117.
[4] Bondar ML, Hoogeman M, Schillemans W, et al.Intra-patient semi-automated segmentation of the cervix-uterus in CT-images for adaptive radiotherapy of cervical cancer[J]. Phys Med Biol, 2013, 58(15): 5317-5332. DOI: 10.1088/0031-9155/58/15/5317.
[5] Sartor H, Minarik D, Enqvist O, et al.Auto-segmentations by convolutional neural network in cervical and anorectal cancer with clinical structure sets as the ground truth[J]. Clin Transl Radiat Oncol, 2020, 25: 37-45. DOI: 10.1016/j.ctro.2020.09.004.
[6] Liu ZK, Liu X, Xiao B, et al.Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network[J]. Phys Med, 2020, 69: 184-191. DOI: 10.1016/j.ejmp.2019.12.008.
[7] 秦楠楠,薛旭东,吴爱林,等.基于U-net卷积神经网络的宫颈癌临床靶区和危及器官自动勾画的研究[J].中国医学物理学杂志,2020, 37(4): 524-528. DOI: 10.3969/j.issn.1005- 202X.2020.04.023.
Qin NN, Xue XD, Wu AL, et al.Automatic segmentation of clinical target volumes and organs-at-risk in radiotherapy for cervical cancer using U-net convolutional neural network[J]. Chin J Med Phys, 2020, 37(4): 524-528. DOI: 10.3969/j.issn.1005-202X.2020.04.023.
[8] 马辰莺,周菊英,徐晓婷,等.基于深度学习宫颈癌靶区自动分割勾画临床研究[J].中华放射肿瘤学杂志,2020, 29(10): 859-865. DOI: 10.3760/cma.j.cn113030-20191112-00475.
Ma CY, Zhou JY, Xu XT, et al.Clinical evaluation of deep learning-based clinical target volume auto-segmentation algorithm for cervical cancer[J]. Chin J Radiat Oncol, 2020, 29(10): 859-865. DOI:10.3760/cma.j.cn113030- 20191112-00475.
[9] 吴青南.郭雯.王金媛,等.基于Dense V-Network神经网络的女性肠道自动分割研究[J].中华放射肿瘤学杂志,2020, 29(9): 790-795. DOI: 10.3760/cma.j.cn113030-20181128- 00599.
Wu QN, Guo W, Wang JY, et al.Research on automatic segmentation of female bowel based on Dense V-Network neural network[J]. Chin J Radiat Oncol, 2020, 29(9): 790-795. DOI: 10.3760/cma.j.cn113030-20181128-00599.
[10] Young AV, Wortham A, Wernick I, et al.Atlas-based segmentation improves consistency and decreases time required for contouring postoperative endometrial cancer nodal volumes[J]. Int J Radiat Oncol Biol Phys, 2011, 79(3): 943-947. DOI: 10.1016/j.ijrobp.2010.04.063.
[11] Kurata Y, Nishio M, Kido A, et al.Automatic segmentation of the uterus on MRI using a convolutional neural network[J]. Comput Biol Med, 2019, 114: 103438. DOI: 10.1016/j.compbiomed.2019.103438.
[12] Zhang C, Shu HZ, Yang GY, et al.HIFUNet: multi-class segmentation of uterine regions from MR images using global convolutional networks for HIFU surgery planning[J]. IEEE Trans Med Imaging, 2020, 39(11): 3309-3320. DOI: 10.1109/TMI.2020.2991266.
[13] Rundo L, Beer L, Ursprung S, et al.Tissue-specific and interpretable sub-segmentation of whole tumour burden on CT images by unsupervised fuzzy clustering[J]. Comput Biol Med, 2020, 120: 103751. DOI: 10.1016/j.compbiomed.2020.103751.
[14] Li HM, Fang JH, Liu SF, et al.CR-Unet: a composite network for ovary and follicle segmentation in ultrasound images[J]. IEEE J Biomed Health Inform, 2020, 24(4): 974-983. DOI: 10.1109/JBHI.2019.2946092.
[15] Chen JH, Bai PG, Zhang XC, et al.Automated intensity modulated radiation therapy treatment planning for cervical cancer based on convolution neural network[J]. Technol Cancer Res Treat, 2020, 19: 1533033820957002. DOI: 10.1177/1533033820957002.
[16] Yusufaly TI, Kallis K, Simon A, et al.A knowledge-based organ dose prediction tool for brachytherapy treatment planning of patients with cervical cancer[J]. Brachytherapy, 2020, 19(5): 624-634. DOI: 10.1016/j.brachy.2020.04.008.
[17] Chen HB, Zhong ZC, Liao YL, et al.A non-rigid point matching method with local topology preservation for accurate bladder dose summation in high dose rate cervical brachytherapy[J]. Phys Med Biol, 2016, 61(3): 1217-1237. DOI: 10.1088/0031-9155/61/3/1217.
[18] Zhen X, Chen JW, Zhong ZC, et al.Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study[J]. Phys Med Biol, 2017, 62(21): 8246-8263. DOI: 10.1088/1361-6560/aa8d09.
[19] Chen JW, Chen HB, Zhong ZC, et al.Investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapy[J]. Radiat Oncol, 2018, 13(1): 125. DOI: 10.1186/s13014-018-1068-0.
[20] Tian Z, Yen A, Zhou ZG, et al.A machine-learning-based prediction model of fistula formation after interstitial brachytherapy for locally advanced gynecological malignancies[J]. Brachytherapy, 2019, 18(4): 530-538. DOI: 10.1016/j.brachy.2019.04.004.
[21] Ochi T, Murase K, Fujii T, et al.Survival prediction using artificial neural networks in patients with uterine cervical cancer treated by radiation therapy alone[J]. Int J Clin Oncol, 2002, 7(5): 294-300. DOI: 10.1007/s101470200043.
[22] Matsuo K, Purushotham S, Jiang B, et al. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model [J]. Am J Obstet Gynecol, 2019, 220(4): 381.e1-381.e14. DOI: 10.1016/j.ajog.2018.12.030.
[23] Wang Q, Xu K, Tong Y, et al.Novel miRNA markers for the diagnosis and prognosis of endometrial cancer[J]. J Cell Mol Med, 2020, 24(8): 4533-4546. DOI: 10.1111/jcmm.15111.
[24] Tian R, Cui ZF, He D, et al.Risk stratification of cervical lesions using capture sequencing and machine learning method based on HPV and human integrated genomic profiles[J]. Carcinogenesis, 2019, 40(10): 1220-1228. DOI: 10.1093/carcin/bgz094.
[25] Chankong T, Theera-Umpon N, Auephanwiriyakul S.Automatic cervical cell segmentation and classification in Pap smears[J]. Comput Methods Programs Biomed, 2014, 113(2): 539-556. DOI: 10.1016/j.cmpb.2013.12.012.
[26] Liu L, Wang YH, Ma Q, et al.Artificial classification of cervical squamous lesions in ThinPrep cytologic tests using a deep convolutional neural network[J]. Oncol Lett, 2020, 20(4): 113. DOI: 10.3892/ol.2020.11974.
[27] 万熠,胡伟平,胡天龙,等.基于容器云架构的诊验理影人工智能云平台[J].通讯世界 2020, 27(10): 166-168. DOI: 10.3969/j.issn.1006-4222.2020.10.080.
Wan Y, Hu WP, Hu TL, et al.Artificial intelligence cloud platform based on container cloud architecture[J]. Commun World, 2020, 27(10): 166-168. DOI: 10.3969/j.issn.1006- 4222.2020.10.080.