Advances in application of CT/MR and PET/MR for target delineation in glioma
Liao Taiping, Zhang Chunyin
Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University/Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province/Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
Abstract:Glioma is the most common central nervous system tumor, mainly derived from the interstitial cells of the nervous system, showing diffuse and infiltrative growth, with the characteristics of high morbidity, high postoperative recurrence, high mortality and low cure rate. Currently, radical resection followed by radiotherapy and chemotherapy is the first choice of treatment. Accurate delineation of GTV-T is of significance for precision radiotherapy after surgery. In addition, CT/MR fusion imaging has been commonly used in the delineation of tumor targets in glioma. In recent years, PET/MR has been more and more widely applied in tumors. In this article, the application and differences between PET/MR and CT/MR for target delineation in glioma were reviewed.
Liao Taiping,Zhang Chunyin. Advances in application of CT/MR and PET/MR for target delineation in glioma[J]. Chinese Journal of Radiation Oncology, 2022, 31(6): 574-578.
[1] 丁骁杰,陈弟,唐超, 等. 全外显子测序技术在脑胶质瘤精准诊疗中的作用及进展:3例报道[J]. 复旦学报(医学版),2018,45(4):590-593. DOI:10.3969/j.issn.1672-8467.2018.04.027. Ding XJ, Chen D, Tang C, et al. The role and progress of whole-exome sequencing technology in the precise diagnosis and treatment of glioma:a report of 3 cases[J]. Fudan Univers J Med Sci, 2018, 45(4):590-593. DOI:10.3969/j.issn.1672-8467.2018.04.027. [2] Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system:a summary[J]. Acta Neuropathol, 2016, 131(6):803-820. DOI:10.1007/s00401-016-1545-1. [3] 郭鹏超. 胶质瘤研究进展[J]. 济宁医学院学报,2019,42(1):47-50. Guo PC. Research progress on glioma[J]. J Jining Med Univers, 2019, 42(1):47-50. [4] Dolezel M, Odrazka K, Zizka J, et al. MRI-based preplanning using CT and MRI data fusion in patients with cervical cancer treated with 3D-based brachytherapy:feasibility and accuracy study[J]. Int J Radiat Oncol Biol Phys, 2012, 84(1):146-152. DOI:10.1016/j.ijrobp.2011.11.003. [5] 郭守娟,李国文,程鹏. CT/MRI融合图像对颅内肿瘤精确放疗靶区勾画的影响[J]. 中国医师进修杂志,2015, 38(4):300-303, 305. DOI:10.3760/cma.j.issn.1673-4904.2015.04.022. Guo SJ, Li GW, Cheng P. The effect of CT/MRI fusion images on the delineation of precise radiotherapy targets for intracranial tumors[J]. Chin J Postgraduat Med, 2015, 38(4):300-303, 305. DOI:10.3760/cma.j.issn.1673-4904.2015.04.022. [6] Horan G, Roques TW, Curtin J, et al."Two are better than one":a pilot study of how radiologist and oncologists can collaborate in target volume definition[J]. Cancer Imaging, 2006, 6(1):16-19. DOI:10.1102/1470-7330.2006.0003. [7] 沈君姝,王朋,朱锡旭, 等. MRI与CT图像融合在颅内肿瘤的靶区勾画和对治疗计划影响的初步研究[J]. 生物医学工程与临床,2013, 17(4):363-366. Shen JS, Wang P, Zhu XX, et al. A preliminary study on the effect of MRI and CT image fusion on target delineation of intracranial tumors and its influence on treatment planning[J]. Biomed Engineer Clinic Med, 2013, 17(4):363-366. [8] 李桂君,王朝,李晓萍, 等. 医学图像融合技术在肿瘤放射治疗中的应用研究[J]. 健康必读,2020,(22):254-255. Li GJ, Wang C, Li XP, et al. Research on the application of medical image fusion technology in tumor radiation therapy[J]. Gems of Health, 2020,(22):254-255. [9] 王永成,牛小军,王利君. MRI和CT融合对脑胶质瘤靶区勾画的影响[J]. 医学理论与实践,2013(24):3320-3321. Wang YC, Niu XJ, Wang LJ. The effect of MRI and CT fusion on the delineation of the target area of glioma[J]. J Med Theor Pract, 2013(24):3320-3321. [10] 陈慧兵,范琴. CT-磁共振成像图像融合技术在脑胶质瘤术后放疗靶区勾画中的应用价值[J]. 医疗装备,2018,31(10):30-31. DOI:10.3969/j.issn.1002-2376.2018.10.020. Chen HB, Fan Q. The application value of CT-MRI image fusion technology in delineation of radiotherapy target area after glioma surgery[J]. Med Equipment, 2018, 31(10):30-31. DOI:10.3969/j.issn.1002-2376.2018.10.020. [11] 陈意标,张汉雄,蒋振东, 等. CT-MRI图像融合技术在脑胶质瘤术后放疗靶区勾画中的应用[J]. 中国癌症防治杂志,2017,9(1):61-64. DOI:10.3969/j.issn.1674-5671.2017.01.12. Chen YB, Zhang HX, Jiang ZD, et al. Application of CT-MRI image fusion technology in delineation of radiotherapy target volume after glioma surgery[J]. Chin J Oncol Prevent Treat, 2017, 9(1):61-64. DOI:10.3969/j.issn.1674-5671.2017.01.12. [12] 柳伟坤,周旋,彭李,等.-(18) F-FDG PET/CT显像在不明原发癌中的诊断价值[J]. 分子影像学杂志,2020,43(01):140-143. Liu WK, Zhou X, Peng L, et al.-(18) F-FDG PET/CT imaging in unknown primary cancer:the diagnostic value of Chinese medicine[J]. J Molecular Imaging,2020,43(01):140-143. [13] Madunic IV, Madunic J, Breljak D, et al. Sodium-glucose cotransporters:new targets of cancer therapy?[J]. Arh Hig Rada Toksikol, 2018, 69(4):278-285. DOI:10.2478/aiht-2018-69-3204. [14] Geisler S, Stegmayr C, Niemitz N, et al. Treatment-related uptake of o-(2-(18) f-fluoroethyl)-l-tyrosine and l-[methyl-(3) H]-methionine after tumor resection in rat glioma models[J]. J Nucl Med, 2019, 60(10):1373-1379. DOI:10.2967/jnumed.119.225680. [15] Pena Pardo FJ, Moreno J, Jiménez Aragón F, et al. Diverse behavior in 18F-fluorocholine PET/CT of brain tumors in patients with neurofibromatosis type 1[J]. Clin Nucl Med, 2019, 44(8):e472-e476. DOI:10.1097/RLU.0000000000002636. [16] T L'Estrade E, Hansen HD, Erlandsson M, et al. Classics in neuroimaging:the serotonergic 2A receptor system-from discovery to modern molecular imaging[J]. ACS Chem Neurosci, 2018, 9(6):1226-1229. DOI:10.1021/acschemneuro.8b00176. [17] Nikaki A, Papadopoulos V, Valotassiou V, et al. Evaluation of the performance of 18F-fluorothymidine positron emission tomography/computed tomography (18F-FLT-PET/CT) in metastatic brain lesions[J]. Diagnostics (Basel), 2019, 9(1) DOI:10.3390/diagnostics9010017. [18] Landau AM, Alstrup AKO, Noer O, et al. Electroconvulsive stimulation differentially affects[11C]MDL100,907 binding to cortical and subcortical 5hT2A receptors in porcine brain[J]. J Psychopharmacol, 2019, 33(6):714-721. DOI:10.1177/026988111 9836212. [19] Hong CM, Ryu HS, Ahn BC. Early perfusion and dopamine transporter imaging using 18F-FP-CIT PET/CT in patients with parkinsonism[J]. Am J Nucl Med Mol Imaging, 2018, 8(6):360-372. [20] Spick C, Herrmann K, Czernin J. 18F-FDG PET/CT and PET/MRI perform equally well in cancer:evidence from studies on more than 2, 300 patients[J]. J Nucl Med, 2016, 57(3):420-430. DOI:10.2967/jnumed.115.158808. [21] Henriksen OM, Larsen VA, Muhic A, et al. Simultaneous evaluation of brain tumour metabolism, structure and blood volume using [(18) F]-fluoroethyltyrosine (FET) PET/MRI:feasibility, agreement and initial experience[J]. Eur J Nucl Med Mol Imaging, 2016, 43(1):103-112. DOI:10.1007/s00259-015-3183-6. [22] Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of 416 patients with glioblastoma multiforme:prognosis, extent of resection, and survival[J]. J Neurosurg, 2001, 95(2):190-198. DOI:10.3171/jns.2001.95.2.0190. [23] Hervey-Jumper SL, Berger MS. Maximizing safe resection of low-and high-grade glioma[J]. J Neurooncol, 2016, 130(2):269-282. DOI:10.1007/s11060-016-2110-4. [24] 邱大胜,孔祥泉,陈宪. MRI在脑胶质瘤放疗靶区的功能定位[J]. 国际医学放射学杂志,2008,31(6):476-477,482. DOI:10.3784/j.issn.1674-1897.2008.06.152. Qiu DS, Kong XQ, Chen X. Application of MRI in functional orientation of brain gliomas on radiation therapy treatment target area[J]. Int J Med Radiol, 2008, 31(6):476-477, 482. DOI:10.3784/j.issn.1674-1897.2008.06.152. [25] Song S, Cheng Y, Ma J, et al. Simultaneous fet-PET and contrast-enhanced MRI based on hybrid PET/MR improves delineation of tumor spatial biodistribution in gliomas:a biopsy validation study[J]. Eur J Nucl Med Mol Imaging, 2020, 47(6):1458-1467. DOI:10.1007/s00259-019-04656-2. [26] 闫文明,王宏伟,郁志龙, 等. 生物靶区定位在胶质瘤术后放射治疗的临床价值研究[J]. 实用癌症杂志,2016,31(8):1349-1351, 1354. DOI:10.3969/j.issn.1001-5930.2016.08.041. Yan WM, Wang HW, Yu ZL, et al. Clinical value of biological target localization in postoperative radiotherapy for glioma[J]. Pract J Cancer, 2016, 31(8):1349-1351, 1354. DOI:10.3969/j.issn.1001-5930.2016.08.041. [27] Munck Af Rosenschold P, Costa J, Engelholm SA, et al. Impact of[18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma[J]. Neuro Oncol, 2015, 17(5):757-763. DOI:10.1093/neuonc/nou316. [28] Navarria P, Reggiori G, Pessina F, et al. Investigation on the role of integrated PET/MRI for target volume definition and radiotherapy planning in patients with high grade glioma[J]. Radiother Oncol, 2014, 112(3):425-429. DOI:10.1016/j.radonc.2014.09.004. [29] 张磊. 能谱CT成像原理及临床应用价值研究[J]. 中国卫生产业,2016,13(29):33-35. DOI:10.16659/j.cnki.1672-5654.2016.29.033. Zhang L. Research on Energy Spectrum CT Imaging Principle and Its Clinical Appli-cation Value[J]. Chin Health Indust,2016,13(29):33-35. DOI:10.16659/j.cnki.1672-5654.2016.29.033. [30] Julià-Sapé M, Candiota AP, Arús C. Cancer metabolism in a snapshot:MRS (I)[J]. NMR Biomed, 2019, 32(10):e4054. DOI:10.1002/nbm.4054. [31] 倪春霞,汪洋,盛晓芳, 等. 应用 DWI 和 DTI 勾画高级别胶质瘤术后放疗靶区的初步研究[J]. 临床神经外科杂志,2015, (3):223-226. DOI:10.3969/j.issn.1672-7770.2015.03.018. Ni CX, Wang Y, Sheng XF, et al. Primary study of DWI and DTI in delineation of radiotherapy target volume with post-operative high-grade glioma[J]. J Clin Neurosurg,2015, (3):223-226. DOI:10.3969/j.issn.1672-7770.2015.03.018. [32] 刘锐,赵旭,赵东利, 等. 基于MIM软件行CT-MRI图像融合技术在脑胶质瘤精确放疗中的应用[J]. 西安交通大学学报(医学版),2020,41(5):668-672. DOI:10.7652/jdyxb202005007. Liu R, Zhao X, Zhao DL, et al. Application of CT-MRI image fusion technology based on MIM software in precise radiotherapy of glioma[J]. J Xi'an Jiaotong Univers (Med Sci), 2020, 41(5):668-672. DOI:10.7652/jdyxb202005007. [33] Heiss WD. Hybrid PET/MR imaging in neurology:present applications and prospects for the future[J]. J Nucl Med, 2016, 57(7):993-995. DOI:10.2967/jnumed.116.175208. [34] Herholz K. Brain tumors:an update on clinical PET research in gliomas[J]. Semin Nucl Med, 2017, 47(1):5-17. DOI:10.1053/j.semnuclmed.2016.09.004. [35] Sekine T, Barbosa FG, Sah BR, et al. PET/MR outperforms PET/CT in suspected occult tumors[J]. Clin Nucl Med, 2017, 42(2):e88-e95. DOI:10.1097/RLU.0000000000001461. [36] Singnurkar A, Poon R, Metser U. Comparison of 18F-FDG-PET/CT and 18F-FDG-PET/MR imaging in oncology:a systematic review[J]. Ann Nucl Med, 2017, 31(5):366-378. DOI:10.1007/s12149-017-1164-5. [37] Delso G, Khalighi M, Ter Voert E, et al. Effect of time-of-flight information on PET/MR reconstruction artifacts:comparison of free-breathing versus breath-hold mr-based attenuation correction[J]. Radiology, 2017, 282(1):229-235. DOI:10.1148/radiol.2016152509. [38] Miller-Thomas MM, Benzinger TL. Neurologic applications of PET/MR imaging[J]. Magn Reson Imaging Clin N Am, 2017, 25(2):297-313. DOI:10.1016/j.mric.2016.12.003. [39] Claudio S, Ken H, Johannes C.18F-FDG PET/CT和PET/MR在恶性肿瘤中的应用价值相仿:2300余例患者的临床研究总结[J]. 中华核医学与分子影像杂志,2020,40(4):247-256. DOI:10.2967/jnumed.115.158808. Claudio S, Ken H, Johannes C. The application value of 18F-FDG PET/CT and PET/MR in malignant tumors is similar:a summary of clinical studies of more than 2300 patients[J]. Chin J Nuclear Med Molecul Imaging, 2020, 40(4):247-256. DOI:10.2967/jnumed.115.158808. [40] 陈曙光,胡鹏程,樊卫, 等. PET/MR全身显像工作流及协议规划专家共识[J]. 中国临床医学,2020,27(4):713-721. DOI:10.12025/j.issn.1008-6358.2020.20201589. Chen SG, Hu PC, Fan W, et al. Expert consensus on PET/MR whole body imaging workflow and protocol planning[J]. Chin J Clin Med,2020, 27(4):713-721. DOI:10.12025/j. issn.1008-6358.2020.20201589.