Abstract:Radiation-induced brain injury is a neurological injury caused by radiation therapy of head and neck tumors. The pathogenesis is still unclear. It is hypothesized that immune cells play an important role in radiation-induced brain injury. The excessive activation of microglia in the central nervous system and the migration of peripheral immune cells into the brain collectively promote the incidence and development of radiation-induced brain injury. In this article, the immunological mechanism underlying the radiation-induced brain injury was reviewed.
Fu Min,Li Xiaoyu,Luo Na et al. Research progress on immunological mechanisms of radiation-induced brain injury[J]. Chinese Journal of Radiation Oncology, 2021, 30(3): 301-304.
[1] Ali FS,Arevalo O,Zorofchian S,et al.Cerebral radiation necrosis:incidence,pathogenesis,diagnostic challenges,and future opportunities[J].Curr Oncol Rep,2019,21(8):66.DOI:10.1007/s11912-019-0818-y. [2] Rahmathulla G,Marko NF,Weil RJ.Cerebral radiation necrosis:a review of the pathobiology,diagnosis and management considerations[J].J Clin Neurosci,2013,20(4):485-502.DOI:10.1016/j.jocn.2012.09.011. [3] 李俊晨,李国华,田野,等.放射性脑损伤的MRI研究进展[J].中华放射肿瘤学杂志,2017,26(1):98-102.DOI:10.3760/cma.j.issn.1004-4221.2017.01.024. Li JC,Li GH,Tian Y,et al.Research progress of functional magnetic resonance imaging in radiation-induced brain injury after head and neck carcinoma radiotherapy[J].Chin J Radiat Oncol,2017,26(1):98-102.DOI:10.3760cma.j.issn.1004-4221.2017.01.024. [4] Mitsuya K,Nakasu Y,Horiguchi S,et al.Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery[J].J Neurooncol,2010,99(1):81-88.DOI:10.1007/s11060-009-0106-z. [5] Gadani SP,Walsh JT,Lukens JR,et al.Dealing with danger in the CNS:the response of the immune system to injury[J].Neuron,2015,87(1):47-62.DOI:10.1016/j.neuron.2015.05.019. [6] Kataoka A,Tozaki-Saitoh H,Koga Y,et al.Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT[J].J Neurochem,2009,108(1):115-125.DOI:10.1111/j.1471-4159.2008.05744.x. [7] Panenka W,Jijon H,Herx LM,et al.P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase[J].J Neurosci,2001,21(18):7135-7142.DOI:10.1523/JNEUROSCI.21-18-07135.2001. [8] Xu P,Xu Y,Hu B,et al.Extracellular ATP enhances radiation-induced brain injury through microglial activation and paracrine signaling via P2X7 receptor[J].Brain Behav Immun,2015,50(1):87-100.DOI:10.1016/j.bbi.2015.06.020. [9] Roth TL,Nayak D,Atanasijevic T,et al.Transcranial amelioration of inflammation and cell death after brain injury[J].Nature,2014,505(7482):223-228.DOI:10.1038/nature12808. [10] Pedrazzi M,Patrone M,Passalacqua M,et al.Selective proinflammatory activation of astrocytes by high-mobility group box 1 protein signaling[J].J Immunol,2007,179(12):8525-8532.DOI:10.4049/jimmunol.179.12.8525. [11] Degryse B,Bonaldi T,Scaffidi P,et al.The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells[J].J Cell Biol,2001,152(6):1197-1206.DOI:10.1083/jcb.152.6.1197. [12] Han W,Umekawa T,Zhou K,et al.Cranial irradiation induces transient microglia accumulation,followed by long-lasting inflammation and loss of microglia[J].Oncotarget,2016,7(50):82305-82323.DOI:10.18632/oncotarget.12929. [13] Xu Y,Sun Y,Zhou K,et al.Cranial irradiation induces hypothalamic injury and late-onset metabolic disturbances in juvenile female rats[J].Dev Neurosci,2018,40(2):120-133.DOI:10.1159/000487923. [14] Rosi S,Andres-Mach M,Fishman KM,et al.Cranial irradiation alters the behaviorally induced immediate-early gene arc (activity-regulated cytoskeleton-associated protein)[J].Cancer Res,2008,68(23):9763-9770.DOI:10.1158/0008-5472.CAN-08-1861. [15] Balentova S,Hajtmanova E,Trylcova R,et al.Ionizing radiation induced long-term alterations in the adult rat rostral migratory stream[J].Acta Histochem,2014,116(1):265-271.DOI:10.1016/j.acthis.2013.08.002. [16] Moravan MJ,Olschowka JA,Williams JP,et al.Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain[J].Radiat Res,2011,176(4):459-473.DOI:10.1667/rr2587.1. [17] Tanaka R,Komine-Kobayashi M,Mochizuki H,et al.Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia[J].Neuroscience,2003,117(3):531-539.DOI:10.1016/s0306-4522(02)00954-5. [18] Andrews RN,Methenv-Barlow LI,Peiffer AM,et al.Cerebrovascular remodeling and neuroinflammation is a late effect of radiation-induced brain injury in non-human primates[J].Radiat Res,2017,187(5):599-611.DOI:10.1667/RR14616.1. [19] Hwang SY,Jung JS,Kim TH,et al.Ionizing radiation induces astrocytes gliosis through microglia activation[J].Neurobiol Dis,2006,21(3):457-467.DOI:10.1016/j.nbd.2005.08.006. [20] Allen AR,Eilertson K,Sharma S,et al.Effects of radiation combined injury on hippocampal function are modulated in mice deficient in chemokine receptor 2(CCR2)[J].Radiat Res,2013,180(1):78-88.DOI:10.1667/RR3344.1. [21] Wang Y,Zhou K,Li T,et al.Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain[J].Cell Death Dis,2017,8(3):e2694.DOI:10.1038/cddis.2017.120. [22] Peng Y,Lu K,Li Z,et al.Blockade of Kv1.3 channels ameliorates radiation-induced brain injury[J].Neuro Oncol,2014,16(4):528-539.DOI:10.1093/neuonc/not221. [23] Jenrow KA,Brown SL,Lapanowski K,et al.Selective inhibition of microglia-mediated neuroinflammation mitigates radiation-induced cognitive impairment[J].Radiat Res,2013,179(5):549-556.DOI:10.1667/RR3026.1. [24] Lei R,Zhao T,Li Q,et al.Carbon ion irradiated neural injury induced the peripheral immune effects in vitro or in vivo[J].Int J Mol Sci,2015,16(12):28334-28346.DOI:10.3390/ijms161226109. [25] Wu L,Chung YL.Tumor-infiltrating T cell receptor-Beta repertoires are linked to the risk of late chemoradiation-induced temporal lobe necrosis in locally advanced nasopharyngeal carcinoma[J].Int J Radiat Oncol Biol Phys,2019,104(1):165-176.DOI:10.1016/j.ijrobp.2019.01.002. [26] Yuan H,Zhang L,Frank JE,et al.Treating brain tumor with microbeam radiation generated by a compact carbon-nanotube-based irradiator:initial radiation efficacy study[J].Radiat Res,2015,184(3):322-333.DOI:10.1667/RR13919.1. [27] Morganti JM,Jopson TD,Liu S,et al.Cranial irradiation alters the brain′s microenvironment and permits CCR2+ macrophage infiltration[J].?BPLoS One,2014,9(4):e93650.DOI:10.1371/journal.pone.0093650. [28] Nordal RA,Nagy A,Pintilie M,et al.Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury:a role for vascular endothelial growth factor[J].Clin Cancer Res,2004,10(10):3342-3353.DOI:10.1158/1078-0432.CCR-03-0426. [29] Zhang P,Chen Y,Zhu H,et al.The effect of gamma-ray-induced central nervous system injury on peripheral immune response:an and study[J].Radiat Res,2019,192(4):440-450.DOI:10.1667/RR15378.1. [30] Xu M,Fan Q,Zhang J,et al.NFAT3/c4-mediated excitotoxicity in hippocampal apoptosis during radiation-induced brain injury[J].J Radiat Res,2017,58(6):827-833.DOI:10.1093/jrr/rrx041. [31] Zhang Q,Li X,He R,et al.The effect of brain-derived neurotrophic factor on radiation-induced neuron architecture impairment is associated with the NFATc4/3 pathway[J].Brain Res,2018,1681(1):21-27.DOI:10.1016/j.brainres.2017.12.032. [32] Absinta M,Ha SK,Nair G,et al.Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI[J].Elife,2017,6:e29738.DOI:10.7554/eLife.29738. [33] Da Mesquita S,Louveau A,Vaccari A,et al.Functional aspects of meningeal lymphatics in ageing and Alzheimer′s disease[J].Nature,2018,560(7717):185-191.DOI:10.1038/s41586-018-0368-8.