Application of MR-guided radiotherapy for pancreatic cancer
Zeng Liang, Zhong Renming
Department of Radiotherapy, Division of Physics Center, State Key Laboratory of Biotherapy, Cancer Center WestChina Hospital, Sichuan University, Chengdu 610041, China
Abstract:Radiotherapy is a vital treatment method for pancreatic cancer. However, the therapeutic effect of radiotherapy is significantly limited by the influence of pancreatic motion. More efficient radiotherapy for pancreatic cancer depends upon the improvement of motion management and high-quality image guidance. The emerging MR-guided radiotherapy (MRgRT) can perform functional imaging with high soft tissue resolution and no additional radiation. Multiple researches have demonstrated that MRgRT has significant advantages in terms of precise delineation of target area and organ at risk, motion management and adaptive radiotherapy, which assists radiotherapy to play a better role in the treatment of pancreatic cancer. In this paper,the application of MRgRT in pancreatic cancer was reviewed and prospected.
[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1):7-34. DOI:10.3322/caac.21551. [2] Neoptolemos JP, Kleeff J, Michl P, et al. Therapeutic developments in pancreatic cancer:current and future perspectives[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(6):333-348. DOI:10.1038/s41575-018-0005-x. [3] Winter JM, Cameron JL, Campbell KA, et al. 1423 pancreaticoduodenectomies for pancreatic cancer:A single-institution experience[J]. J Gastrointest Surg, 2006, 10(9):1199-1210. discussion 1210-1191. DOI:10.1016/j.gassur.2006.08.018. [4] Hammel P, Huguet F, van Laethem JL, et al. Effect of chemoradiotherapy vs. chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib:the LAP07 randomized clinical trial[J]. JAMA, 2016, 315(17):1844-1853. DOI:10.1001/jama.2016.4324. [5] Huguet F, Andre T, Hammel P, et al. Impact of chemoradiotherapy after disease control with chemotherapy in locally advanced pancreatic adenocarcinoma in GERCOR phase ⅡAnd Ⅲ studies[J]. J Clin Oncol, 2007, 25(3):326-331. DOI:10.1200/JCO.2006.07.5663. [6] Loehrer PJ, Sr, Feng Y, Cardenes H, et al. Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer:an Eastern Cooperative Oncology Group trial[J]. J Clin Oncol, 2011, 29(31):4105-4112. DOI:10.1200/JCO.2011.34.8904. [7] Versteijne E, Suker M, Groothuis K, et al. Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer:results of the dutch randomized phase Ⅲ PREOPANC trial[J]. J Clin Oncol, 2020, 38(16):1763-1773. DOI:10.1200/JCO.19.02274. [8] Hoyer M, Roed H, Sengelov L, et al. Phase-Ⅱ study on stereotactic radiotherapy of locally advanced pancreatic carcinoma[J]. Radiother Oncol, 2005, 76(1):48-53. DOI:10.1016/j.radonc.2004.12.022. [9] Schellenberg D, Kim J, Christman-Skieller C, et al. Single-fraction stereotactic body radiation therapy and sequential gemcitabine for the treatment of locally advanced pancreatic cancer[J]. Int J Radiat Oncol Biol Phys, 2011, 81(1):181-188. DOI:10.1016/j.ijrobp.2010.05.006. [10] Polenta V, Slater EP, Kann PH, et al. Preoperative imaging overestimates the tumor size in pancreatic neuroendocrine neoplasms associated with multiple endocrine neoplasia type 1[J]. World J Surg, 2018, 42(5):1440-1447. DOI:10.1007/s00268-017-4317-8. [11] van Beek DJ, Verkooijen HM, Nell S, et al. Reliability and agreement of radiological and pathological tumor size in patients with MEN1-related pancreatic neuroendocrine tumors:results from a population-based cohort[J]. Neuroendocrinology, 2020. DOI:10.1159/000510514. [12] Li J, Denniston KA, Hussain SM, et al. Comparison of CT and MRI-based gross tumor volume and organ at risk delineation for pancreatic cancer patients undergoing neoadjuvant stereotactic body radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2014, 90(1):S356. DOI:10.1016/j.ijrobp.2014.05.1158. [13] Hall WA, Heerkens HD, Paulson ES, et al. Pancreatic gross tumor volume contouring on computed tomography (CT) compared with magnetic resonance imaging (MRI):results of an international contouring conference[J]. Pract Radiat Oncol, 2018, 8(2):107-115. DOI:10.1016/j.prro.2017.11.005. [14] Caravatta L, Cellini F, Simoni N, et al. Magnetic resonance imaging (MRI) compared with computed tomography (CT) for interobserver agreement of gross tumor volume delineation in pancreatic cancer:a multi-institutional contouring study on behalf of the AIRO group for gastrointestinal cancers[J]. Acta Oncol, 2019, 58(4):439-447. DOI:10.1080/0284186X.2018.1546899. [15] Chen Y, Chen X, Hall WA, et al. A preferred patient decubitus positioning for MRI-guided online adaptive radiation therapy of pancreatic cancer[J]. Int J Radiat Oncol Biol Phys, 2019, 105(1):S240. DOI:10.1016/j.ijrobp.2019.06.350. [16] Heerkens HD, van Vulpen M, van den Berg CA, et al. MRI-based tumor motion characterization and gating schemes for radiation therapy of pancreatic cancer[J]. Radiother Oncol, 2014, 111(2):252-257. DOI:10.1016/j.radonc.2014.03.002. [17] Feng M, Balter JM, Normolle D, et al. Characterization of pancreatic tumor motion using cine MRI:surrogates for tumor position should be used with caution[J]. Int J Radiat Oncol Biol Phys, 2009, 74(3):884-891. DOI:10.1016/j.ijrobp.2009.02.003. [18] Tchelebi LT, Zaorsky NG, Rosenberg JC, et al. Reducing the toxicity of radiotherapy for pancreatic cancer with magnetic resonance-guided radiotherapy[J]. Toxicol Sci, 2020, 175(1):19-23. DOI:10.1093/toxsci/kfaa021. [19] Massaccesi M, Cusumano D, Boldrini L, et al. A new frontier of image guidance:organs at risk avoidance with MRI-guided respiratory-gated intensity modulated radiotherapy:technical note and report of a case[J]. J Appl Clin Med Phys, 2019, 20(6):194-198. DOI:10.1002/acm2.12575. [20] Boldrini L, Cellini F, Manfrida S, et al. Use of indirect target gating in magnetic resonance-guided liver stereotactic body radiotherapy:case report of an oligometastatic patient[J]. Cureus, 2018, 10(3):e2292. DOI:10.7759/cureus.2292. [21] Keiper TD, Tai A, Chen X, et al. Feasibility of real-time motion tracking using cine MRI during MR-guided radiation therapy for abdominal targets[J]. Med Phys, 2020, 47(8):3554-3566. DOI:10.1002/mp.14230. [22] Rudra S, Jiang N, Rosenberg SA, et al. Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer[J]. Cancer Med, 2019, 8(5):2123-2132. DOI:10.1002/cam4.2100. [23] Spieler B, El-Bared N, Padgett KR, et al. Daily adaptive magnetic resonance image guidance protects the duodenum from dose constraint violations associated with interfraction stomach deformation in stereotactic body radiation therapy for locally advanced pancreatic cancer[J]. Int J Radiat Oncol Biol Phys, 2018, 102(3):e82-e83. DOI:10.1016/j.ijrobp.2018.07.441. [24] Spieler BO, El Bared N, Padgett K, et al.(OA06) Interfraction variations in stomach volume increase dose to stomach and duodenum in pancreas stereotactic body radiotherapy and is mitigated by daily adaptive magnetic resonance image guided radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2018, 101(2):e3. DOI:10.1016/j.ijrobp.2018.02.045. [25] El-Bared N, Portelance L, Spieler BO, et al. Dosimetric benefits and practical pitfalls of daily online adaptive MRI-guided stereotactic radiation therapy for pancreatic cancer[J]. Pract Radiat Oncol, 2019, 9(1):e46-e54. DOI:10.1016/j.prro.2018.08.010. [26] Placidi L, Romano A, Chiloiro G, et al. On-line adaptive MR guided radiotherapy for locally advanced pancreatic cancer:Clinical and dosimetric considerations[J]. Tech Innov Patient Support Radiat Oncol, 2020, 15: 15-21. DOI:10.1016/j.tipsro.2020.06.001. [27] Fecteau RE, Pennell R, Farjam RF, et al. Initial dosimetric outcomes and treatment related toxicities using stereotactic MRI-guided radiation therapy (SMART) for unresectable pancreatic cancer at a single institution[J]. Int J Radiat Oncol Biol Phys, 2019, 105(1):E235-E236. DOI:10.1016/j.ijrobp.2019.06.2008. [28] Hasler SW, Bernchou U, Bertelsen A, et al. Tumor-site specific geometric distortions in high field integrated magnetic resonance linear accelerator radiotherapy[J]. Phys Imag Radiat Oncol, 2020, 15:100-104. DOI:10.1016/j.phro.2020.07.007. [29] Hwang K, McKinnon G, Lorbiecki J, et al. WE-G-217A-06:spatial accuracy quantification of an MR system[J]. Med Phys, 2012, 39(6Part28):3976. DOI:10.1118/1.4736225. [30] Sun J, Dowling J, Pichler P, et al. MRI simulation:end-to-end testing for prostate radiation therapy using geometric pelvic MRI phantoms[J]. Phys Med Biol, 2015, 60(8):3097-3109. DOI:10.1088/0031-9155/60/8/3097. [31] Zhang Y, Paulson ES, Ahunbay EE, et al. Improving deformable image registration and segmentation using a combined preprocessing pipeline and multiple input strategy for online adaptive MR-guided radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2019, 105(1):S30. DOI:10.1016/j.ijrobp.2019.06.439. [32] Olberg S, Green O, Cai B, et al. Optimization of treatment planning workflow and tumor coverage during daily adaptive magnetic resonance image guided radiation therapy (MR-IGRT) of pancreatic cancer[J]. Radiat Oncol, 2018, 13(1):51. DOI:10.1186/s13014-018-1000-7. [33] Bohoudi O, Bruynzeel AME, Senan S, et al. Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer[J]. Radiother Oncol, 2017, 125(3):439-444. DOI:10.1016/j.radonc.2017.07.028. [34] Liang F, Qian P, Su KH, et al. Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy:an intelligent, multi-level fusion approach[J]. Artif Intell Med, 2018, 90:34-41. DOI:10.1016/j.artmed.2018.07.001. [35] Spieler B, Patel NV, Breto AL, et al. Automatic segmentation of abdominal anatomy by artificial intelligence (AI) in adaptive radiotherapy of pancreatic cancer[J]. Int J Radiat Oncol Biol Phys, 2019, 105(1):E130-E131. DOI:10.1016/j.ijrobp.2019.06.2261. [36] Johnstone E, Wyatt JJ, Henry AM, et al. Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging-only radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2018, 100(1):199-217. DOI:10.1016/j.ijrobp.2017.08.043.