Nomenclature standardization of radiotherapy in cervical cancer
Zheng Wanjia1,2, Mai Xiuying1,3, You Yiqi1,4, Huang Sijuan1, Tao Yalan1, Chi Feng1, Cao Xinping1, Lin Chengguang1, Huang Xiaoyan1, Yang Xin1
1Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China; 2Department of Oncology, Armed Forces of the Chinese People's Liberation Army Guangdong Provincial General Hospital, Guangzhou 510507, China; 3XinHua College of Sun Yat-sen University, Guangzhou 510520, China; 4National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
Abstract:Objective To standardize the naming of organ at risk (OAR) and target area during cervical cancer radiotherapy based on AAPM TG-263. Methods After self-programming of Matlab software to implement the reading and resolution of radiotherapy structure files, the naming of each substructure was automatically output, recorded and restored. After naming all substructures, the structure names were classified by keywords. According to TG-263, a standard naming conversion table of OAR and target area was developed, and the classified structure names were standardized through procedures. Finally, the standardized named radiotherapy structure files were output and imported into the treatment planning system (TPS). Results The radiation structure of 144 patients with cervical cancer was successfully transformed and displayed correctly in TPS. Before the transformation, the naming of OAR and target area lacked of uniform norms and standards, and the naming of the same structure significantly differed. After the transformation, 43 naming methods of OAR and 74 naming methods of the target area were unified into 20 and 8 naming methods, which were more convenient for staff understanding and communication. Conclusion The standardization of cervical cancer radiotherapy structure naming can reduce the inconsistency of naming and provide reference for the standardized naming of pelvic tumors.
Zheng Wanjia,Mai Xiuying,You Yiqi et al. Nomenclature standardization of radiotherapy in cervical cancer[J]. Chinese Journal of Radiation Oncology, 2021, 30(2): 180-185.
[1] 国家肿瘤诊疗质控中心放疗质控专家委员会,赫捷,王绿化,等. 放疗质量控制基本指南[J]. 中华放射肿瘤学杂志, 2018, 27(4):335-342. DOI:10.3760/cma.j.issn.1004-4221.2018.04.001. National Cancer Quality Control Center Radiotherapy Quality Control Expert Committee, He J, Wang LH, et al. Basic guidelines of quality control for radiotherapy[J]. Chin J Radiat Oncol, 2018, 27(4):335-342. DOI:10.3760/cma.j.issn.1004-4221.2018.04.001. [2] Hendee WR, Herman MG. Improving patient safety in radiation oncology[J]. Med Phys, 2011, 38(1):78-82. DOI:10.1118/1.3522875. [3] Ford EC, Fong de Los Santos L, Pawlicki T, et al. Consensus recommendations for incident learning database structures in radiation oncology[J]. Med Phys, 2012, 39(12):7272-7290. DOI:10.1118/1.4764914. [4] Chera BS, Mazur L, Buchanan I, et al. Improving patient safety in clinical oncology:applying lessons from normal accident theory[J]. JAMA Oncol, 2015, 1(7):958-964. DOI:10.1001/jamaoncol.2015.0891. [5] Cunningham J, Coffey M, Knöös T, et al. Radiation oncology safety information system (ROSIS)-profiles of participants and the first 1074 incident reports[J]. Radiother Oncol, 2010, 97(3):601-607. DOI:doi.org/10.1016/j.radonc.2010.10.023. [6] Mutic S, Brame RS, Oddiraju S, et al. Event (error and near-miss) reporting and learning system for process improvement in radiation oncology[J]. Med Phys, 2010, 37(9):5027-5036. DOI:10.1118/1.3471377. [7] Santanam L, Brame RS, Lindsey A, et al. Eliminating inconsistencies in simulation and treatment planning orders in radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2013, 85(2):484-491. DOI:10.1016/j.ijrobp.2012.03.023. [8] Mayo C, Moran JM, Xiao Y, et al. AAPM task group 263:tackling standardization of nomenclature for radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2015, 93(3):E383-E384. DOI:10.1118/1.4923956. [9] Santanam L, Hurkmans C, Mutic S, et al. Standardizing naming conventions in radiation oncology[J]. Int J Radiat Oncol Biol Phys, 2012, 83(4):1344-1349. DOI:10.1016/j.ijrobp.2011.09.054. [10] Mayo CS, Moran JM, Bosch W,et al. American Association of Physicists in Medicine Task Group 263:standarizing nomenclatures in radiation oncology[J]. Int J Radiat Oncol Biol Phys, 2018, 100(4):1057-1066. DOI:10.1016/j.ijrobp.2017.12.013. [11] Law MYY, Liu B. DICOM-RT and its utilization in radiation therapy[J]. Radiographics, 2009, 29(3):655-667. DOI:10.1148/rg.293075172. [12] Jones D. ICRU report 50-prescribing, recording and reporting photon beam therapy[J]. Med Phys, 1994, 21(6):833-834. DOI:10.1118/1.597396. [13] Wambersie A. ICRU report 62, prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50)[EB/OL][2019-10-10].http://www.ilo.org/dyn/cisdoc2/cismain.details?p_lang=en&p_doc_id=75387. [14] Denton TR, Shields LBE, Hahl M, et al. Guidelines for treatment naming in radiation oncology[J]. J Appl Clin Med Phys, 2016, 17(2):123-138. DOI:10.1120/jacmp.v17i2.5953. [15] 游依琪,郑万佳,郑智满,等. 头颈肿瘤调强放疗结构命名标准化的方法与实现[J]. 中国医学物理学杂志,2019,36(02):146-151. DOI:10.3969/j.issn.1005-202X.2019.02.005. You YQ, Zheng WJ, Zheng ZM, et al. Method and implementation of structure nomenclatures standardization of head-neck tumor in IMRT[J]. Chin J Med Phys, 2019, 36(2):146-151. DOI:10.3969/j.issn.1005-202X.2019.02.005. [16] You Y, Zheng W, Huang S, et al. A method of nomenclature standardization in radiotherapy for difference tumors[C]. Nashville, Tennessee, USA:2018 AAPM annual meeting, 2018. [17] 黄慎,游依琪,魏伟,等. 基于多中心鼻咽癌放疗结构命名标准化的实现与验证[C].北京:2018全国医学物理大会(CSMP),2018:320-321. Huang S, You YQ, Wei W, et al. Realization and verification of naming standardization of radiotherapy based on multi-center nasopharyngeal carcinoma[C]. Beijing: 2018 China National Congress of Medical Physics (CSMP), 2018:320-321. [18] You Y, Huang S, Lu S, et al. Standardization of nomenclature for radiotherapy of head and neck tumor in two institutions[C]. Nashville, Tennessee, USA:2018 AAPM Annual Meeting, 2018. [19] Mai XY, Huang S, Huang SJ, et al. Validation of production standardizing radiation therapy structures names by the content-based standardizing nomenclatures (CBSN) in radiation oncology[C]. Nashville, Tennessee, USA:2019 AAPM Annual Meeting, 2019. [20] Rhee D, Nguyen C, Netherton T, et al. TG-263-Net:a deep learning model for organs-at-risk nomenclature standardization[C]. Nashville, Tennessee, USA:2019 AAPM Annual Meeting, 2019. [21] Sleeman WIV, Nalluri J, Khajamoinuddin S, et al. Machine learning method to automate structure name mapping[C]. Nashville, Tennessee, USA:2019 AAPM Annual Meeting, 2019. [22] 王金媛,徐寿平,刘博,等. 定量评价Atlas模板库病例数目对宫颈癌危及器官自动勾画的影响[J]. 中国医学物理学杂志,2019, 36(7):760-764. DOI:10.3969/j.issn.1005-202X.2019.07.004. Wang JY, Xu SP, Liu B, et al. Quantitative evaluation of Atlas-based auto-segmentation of organs-at-risk in patients with cervical cancer using different Atlas database sizes[J]. Chin J Med Phys, 2019, 36(7):760-764. DOI:10.3969/j.issn.1005-202X.2019.07.004. [23] Prescribing,recording,and reporting brachytherapy for cancer of the cervix ICRU report 89[J] J ICRU, 2013, 13(1-2):NP.DOI:10.1093/jicru/ndw027. [24] 程光惠,施丹. ICRU 89号报告解析之临床篇——宫颈癌自适应近距离放疗靶区勾画[J]. 中华放射肿瘤学杂志,2019, 28(4):250-257. DOI:10.3760/cma.j.issn.1004-4221.2019.04.002. Cheng GH, Shi D. Clinical interpretation of ICRU report No.89-target contouring for adaptive brachytherapy of cervical cancer[J]. Chin J Radiat Oncol,2019, 28(4):250-257. DOI:10.3760/cma.j.issn.1004-4221.2019.04.002. [25] 何明远,汤玉环,赵红福,等. ICRU 89号报告解读(宫颈癌近距离治疗处方、记录和报告)——放射生物篇[J]. 中华放射肿瘤学杂志,2019, 28(2):140-145. DOI:10.3760/cma.j.issn.1004-4221.2019.02.012. He MY, Tang YH, Zhao HF, et al. Interpretation of ICRU report No.89(prescribing, recording, and reporting brachytherapy for cancer of the cervix)-radiobiology[J]. Chin J Radiat Oncol, 2019, 28(2):140-145. DOI:10.3760/cma.j.issn.1004-4221.2019.02.012. [26] 赵红福,韩东梅,程光惠, 等. ICRU 89号报告的解读——放射物理篇[J]. 中华放射肿瘤学杂志,2019, 28(1):74-77. DOI:10.3760/cma.j.issn.1004-4221.2019.01.016. Zhao HF, Han DM, Cheng GH, et al. Interpretation of ICRU report No.89-radiation physics[J]. Chin J Radiat Oncol, 2019, 28(1):74-77. DOI:10.3760/cma.j.issn.1004-4221.2019.01.016. [27] Van der Veen J, Willems S, Deschuymer S, et al. Benefits of deep learning for delineation of organs at risk in head and neck cancer[J]. Radiother Oncol, 2019, 138(1):68-74. DOI:10.1016/j.radonc.2019.05.010. [28] Liang SJ, Tang F, Huang X, et al. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning[J]. Eur Radiol, 2019, 29(4):1961-1967. DOI:10.1007/s00330-018-5748-9.