A comparative study of dose distribution of prostate IMRT between IMRT and VMAT models using knowledge-based planning
Bi Suyan, Dai Zhitao, Ding Zhen, Sun Xingru, Yuan Qingqing, Chen Zhijian, Ren Hua
National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
Abstract:Objective To compare the dosimetric difference between knowledge-based planning (KBP) volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) models for predicting the dose distribution during IMRT, aiming to investigate the feasibility of VMAT model to predict the IMRT plans. Methods Fifty prostate cancer patients who had completed radiotherapy were selected. Manual planning was performed on each selected patient to generate the corresponding IMRT and VMAT plans. The IMRT and VMAT manual plans of the 40 randomly-selected patients were adopted to generate the KBP VMAT and IMRT models. The remaining 10 patients were utilized to predict IMRT plans. VMAT library-derived IMRT model (V-IMRT) and IMRT library-derived IMRT model (I-IMRT) were generated. Dosimetric parameters related to organ-at-risks (OARs) and planning target volume (PTV) were statistically compared among the manual IMRT (mIMRT), V-IMRT and I-IMRT plans. Results Compared with the mIMRT plan, I-IMRT could significantly better control Dmax of the PTV (P=0.039), whereas V-IMRT and I-IMRT plans could better protect the bladder and bilateral femoral heads (both P<0.05). V-IMRT plan could better protect the Dmax of bilateral femoral heads and the D15% of the right femoral head (both P<0.05), whereas no significant difference was observed in other OARs and PTV (all P>0.05). Conclusions Compared with the manual plans, KBP IMRT plan has significant advantages in protecting the OARs. KBP VMAT and IMRT models are both feasible in clinical practice, which yield equivalent accuracy for predicting IMRT plan.
Bi Suyan,Dai Zhitao,Ding Zhen et al. A comparative study of dose distribution of prostate IMRT between IMRT and VMAT models using knowledge-based planning[J]. Chinese Journal of Radiation Oncology, 2021, 30(2): 164-169.
[1] Batumalai V, Jameson MG, Forstner DF, et al. How important is dosimetrist experience for intensity modulated radiation therapy? A comparative analysis of a head and neck case[J]. Pract Radiat Oncol, 2013, 3(3):e99-e106. DOI:10.1016/j.prro.2012.06.009. [2] 高磊,吕庆文,李树祥. 一种求调强放疗中最佳笔射束强度分布的改进方法[J]. 北京生物医学工程, 1999(3):40-42. Gao L, Lyu QW, Li SX. An improved method for determining the optimal pencil beam intensity distribution in IMRT[J]. Beijing Biomed Engine, 1999(3):40-42. [3] Moore KL, Brame RS, Low DA, et al. Experience-based quality control of clinical intensity-modulated radiotherapy planning[J]. Int J Radiat Oncol Biol Phys, 2011, 81(2):545-551. DOI:10.1016/j.ijrobp.2010.11.030. [4] Moore KL, Brame RS, Low DA, et al. Quantitative metrics for assessing plan quality[J]. Semin Radiat Oncol, 2012, 22(1):62-69. DOI:10.1016/j.semradonc.2011.09.005. [5] Wu BB, Ricchetti F, Sanguineti G, et al. Patient geometry-driven information retrieval for IMRT treatment plan quality control[J]. Med Phys, 2009, 36(12):5497-5505. DOI:10.1118/1.3253464. [6] Digesú C, Cilla S, Gaetano AD, et al. Postoperative intensity modulated radiation therapy in high risk prostate cancer:a dosimetric comparison[J]. Med Dosim, 2012, 36(3):231-239. DOI:10.1016/j.meddos.2010.03.009. [7] 任江萍,周瑛瑛,戴许豪,等. 自动计划RapidPlan优化模块在鼻咽癌调强计划中的可行性应用[J]. 中国医学物理学杂志, 2017, 34(8):783-790. DOI:10.3969/j.issn.1005-202X.2017.08.006. Ren JP, Zhou YY, Dai XH, et al. Feasibility application of RapidPlan optimization module in nasopharyngeal carcinoma intensity modulation plan[J]. Chin J Med Phys, 2017, 34(8):783-789. DOI:10.3969/j.issn.1005-202X.2017.08.006. [8] 吴骏翔,康盛伟,王培,等. 宫颈癌术后放疗中自动计划与人工计划的剂量学比较[J]. 中华放射医学与防护杂志, 2018, 38(1):26-31. DOI:10.3760/cma.j.issn.0254-5098.2018.01.006. Wu JX, Kang SW, Wang P, et al. Dosimetric comparison between automatic plan and artificial plan in postoperative radiotherapy for cervical cancer[J]. Chin J Radiol Prot, 2018, 38(1):26-31. DOI:10.3760/cma.j.issn.0254-5098.2018.01.006. [9] Good D, Lo J, Lee WR, et al. A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers an example application[J]. Int J Radiat Oncol Biol Phys, 2013, 87(1):176-181. DOI:10.1016/j.ijrobp.2013.03.015. [10] 吴昊,蒋璠,岳海振,等. 瓦里安RapidPlan模型训练中统计离群值的处理及其剂量学影响[J]. 中国医学物理学杂志, 2016, 33(7):649-653. DOI:10.3969/j.issn.1005-202X.2016.07.001. Wu H, Jiang F, Yue HZ, et al. Treatment of statistical outliers and its dosimetric influence in the training of Varian RapidPlan model[J]. Chin J Med Phys, 2016, 33(7):649-653. DOI:10.3969/j.issn.1005-202X.2016.07.001. [11] Shiraishi S, Tan J, Olsen LA, et al. Knowledge-based prediction of plan quality metrics in intracranial stereotactic radiosurgery[J]. Med Phys, 2015, 42(2):908-917. DOI:10.1118/1.4906183. [12] Tol JP, Delaney AR, Dahele M. Evaluation of a knowledge-based planning solution for head and neck cancer[J]. Int J Radiat Oncol Biol Phys, 2015, 91(3):612-620. DOI:10.1016/j.ijrobp.2014.11.014. [13] 邱健健,赵俊,彭佳元. 基于容积调强弧形技术模型的全自动逆向优化方案的设计及应用[J]. 中华放射医学与防护杂志, 2013, 33(5):497-500. DOI:10.3760/cma.j.issn.0254-5098.2013.05.010. Qiu JJ, Zhao J, Peng JY. Design and application of automatic reverse optimization scheme based on volumetric strength arc technology model[J]. Chin J Radiol Prot, 2013, 33(5):497-500. DOI:10.3760/cma.j.issn.0254-5098.2013.05.010. [14] Fox T, Schreibmann E, Jani A. RT Analytics Prior-Knowledge Treatment Planning Using mage-Based Database Mining[J]. Med. Phys, 2011,38:3372. DOI:10.1118/1.3611477. [15] Wells DM, Walrath D, Craighead PS. Improvement in tangential breast planning efficiency using a knowledge-based expert system[J]. Med Dosim, 2000, 25(3):133-138. DOI:10.1016/S0958-3947(00)00039-X. [16] Krayenbuehl J, Norton I, Studer G, et al. Evaluation of an automated knowledge based treatment planning system for head and neck[J]. Radiat Oncol, 2015, 10:226. DOI:10.1186/s13014-015-0533-2. [17] Appenzoller L, Wooten H, Yaddanapudi S, et al. Automation of lung treatment planning with the eclipse scripting application programming interface[J] Int J Radiat Oncol Biol Phys, 2012,84(3):S589-S590. DOI:10.1016/j.ijrobp.2012.07.1572. [18] Yang YD, Ford EC, Wu BB, et al. An overlap-volume-histogram based method for rectal dose prediction and automated treatment planning in the external beam prostate radiotherapy following hydrogel injection[J]. Med Phys, 2013, 40(1):011709. DOI:10.1118/1.4769424. [19] 韦英林. 基于Pinnacle3 9.10的自动计划和手工计划在右乳腺癌改良根治术中的剂量学比较[J]. 微创医学, 2017, 3:312-314. DOI:10.11864/j.issn.1673.2017.03.04. Wei YL. Dosimetric comparison between the automated plan and the manual plan based on Pinnacle3 9.10 in improved radical mastectomy for right breast cancer[J]. Minimal invas Med, 2017,3:312-314. DOI:10.11864/j.issn.1673.2017.03.04. [20] Zhu X, Ge Y, Li T, et al. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning[J]. Med Phys, 2011,38(2):719-726. DOI:10.1118/1.3539749. [21] Yuan L, Ge Y, Lee WR, et al. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans[J]. Med Phys, 2012, 39(11):6868-6878. DOI:10.1118/1.4757927. [22] Santanam L, Hurkmans C, Mutic S, et al. Standardizing naming conventions in radiation oncology[J]. Int J Radiat Oncol Biol Phys, 2012, 83(4):1344-1349. DOI:10.1016/j.ijrobp.2011.09.054. [23] 范嘉伟,王佳舟,胡伟刚. 基于核密度估计的自动计划研究[J]. 中华放射肿瘤学杂志, 2017, 26(6):661-666. DOI:10.3760/cma.j.issn.1004-4221.2017.06.012. Fan JW, Wang JZ, Hu WG. Research on automatic planning based on nuclear density estimation[J]. Chin J Radiat Oncol, 2017, 26(6):661-666. DOI:10.3760/cma.j.issn.1004-4221.2017.06.012.