[an error occurred while processing this directive]|[an error occurred while processing this directive]
恶性肿瘤精准热疗的部分研究进展
钱嘉凝1, 吴稚冰2
1浙江中医药大学第二临床医学院,杭州 310053; 2浙江医院肿瘤科,杭州 310030
Partial research progress on precision hyperthermia for malignant tumors
Qian Jianing1, Wu Zhibing2
1Second Clinical Medical College of ZhejiangChinese Medical University,Hangzhou 310053,China; 2Department of Oncology, Zhejiang Hospital,Hangzhou 310030,China
Abstract:Since the 21st century,with the changes of people′s living habits and the aggravation ofenvironmental pollution,the incidence of tumors has been increasing day by day,which has become the main deathcauseof human diseases. Atpresent,in addition to the three major conventional treatments of tumors,the emergence of hyperthermia provides a safer and more effective solution for the prevention and treatment of tumors. Attributed to the rapid development of mechanical manufacturing,computertechnology,molecularbiology,materials science and other disciplines,precision hyperthermia presented by radiofrequency and ultrasonic focusing hyperthermia guided by magnetic resonance imaging (MRI) non-invasive temperature measure technology,as well as molecular level targeted hyperthermia have provided a broader perspective for the treatment of tumors. This article reviews the partial research progress on precision hyperthermia to understand the current general situation of precision hyperthermia for tumors.
Qian Jianing,Wu Zhibing. Partial research progress on precision hyperthermia for malignant tumors[J]. Chinese Journal of Radiation Oncology, 2020, 29(3): 233-236.
[1] Oei AL,van Leeuwen CM,Ten CR,et al. Hyperthermia selectively targets human papillomavirus in cervical tumors via p53-dependent apoptosis[J]. Cancer Res,2015,75(23):5120-9. DOI:10.1158/0008-5472. CAN-15-0816.
[2] Kossatz S,Grandke J,Couleaud P,et al. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery[J]. Breast Cancer Res,2015,17:66. DOI:10.1186/s13058-015-0576-1.
[3] Lin Y,Liu Z,Li Y,et al. Short-term hyperthermia promotes the sensitivity of MCF-7 human breast cancer cells to paclitaxel.[J]. Biol Pharmaceut Bull,2013,36(3):376-83. DOI:10.1248/bpb.b12-00774.
[4] Hurwitz M,Stauffer P. Hyperthermia,radiation and chemotherapy:the role of heat in multidisciplinary cancer care[J]. Semin Oncol,2014,41(6):714-29. DOI:10.1053/j.seminoncol.2014.09.014.
[5] Esfahani AJ,Mahdavi SR,Shiran MB. The Role of radiofrequency hyperthermia in the radiosensitization of a human prostate cancer cell lLine[J]. Cell J,2017,19(Suppl 1):86-95. DOI:10.22074/cellj.2017.4460.
[6] 冯剑兰,何锦潮,叶淑敏. 美国BSD2000深部肿瘤热疗机的原理及维修实例[J]. 医疗装备,2016,29(9):70. DOI:10.3969/j.issn.1002-2376.2016.09.046.
Feng JL,He JC,Ye SM. Principles and maintenance examples of BSD2000 deep tumor hyperthermia machine in the United States[J]. MedEquip,2016,29(9):70. DOI:10.3969/j.issn.1002-2376.2016.09.046.
[7] Issels RD,Lindner LH,Verweij J,et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma:arandomised phase 3 multicentre study[J]. Lancet Oncol,2010,11(6):561-70. DOI:10.1016/S1470-2045(10)70071-1.
[8] Schroeder C,Gani C,Lamprecht U, et al. Pathological complete response and sphincter-sparing surgery after neoadjuvant radiochemotherapy with regional hyperthermia for locally advanced rectal cancer compared with radiochemotherapy alone[J]. Int J Hyperther,2012,28(8):707-714. DOI:10.3109/02656736.2012.722263.
[9] 伍烽,王智彪,陈文直,等. 高强度聚焦超声体外破坏原发性肝癌的病理学观察[J]. 中华肿瘤杂志, 2001(3):61-63. DOI:CNKI:SUN:ZHZL.0.2001-03-022.
Wu Y,Wang ZB,Chen WZ,et al. Pathological study of extracorporeally ablated hepatocellular carcinoma with high-intensity focused ultrasound[J]. Chin J Oncol,2001(3):61-63. DOI:CNKI:SUN:ZHZL.0.2001-03-022.
[10] Himabindu Y,Sriharibabu M,Nyapathy V,et al. Early evaluation of magnetic resonance imaging guided focused ultrasound sonication in the treatment of uterine fibroids[J]. Indian J Med Res,2014,139(2):267-272.
[11] Rabinovici J,David M,Fukunishi H,et al. Pregnancy outcome after magnetic resonance-guided focused ultrasound surgery (MRgFUS) for conservative treatment of uterine fibroids[J]. Fert Ster,2010,93(1):199-209. DOI:10.1016/j.fertnstert.2008.10.001.
[12] Froeling V,Meckelburg K,Schreiter NF,et al. Outcome of uterine artery embolization versus MR-guided high-intensity focused ultrasound treatment for uterine fibroids:long-term results[J]. Eur J Radiol,2013,82(12):2265-2269. DOI:10.1016/j.ejrad.2013.08.045.
[13] Ishida O,Maruyama K,Yanagie H,et al. Targeting chemotherapy to solid tumors with long-circulating thermosensitive liposomes and local hyperthermia[J]. Cancer Sci,2000,91(1):118-126. DOI:10.1111/j.1349-7006.2000.tb00868.x.
[14] Tak WY,Lin SM,Wang Y,et al. PhaseⅢ heat study adding Lyso-thermosensitive liposomal doxorubicin to radiofrequency ablation in patients with unresectable hepatocellular carcinoma lesions[J]. Clin Cancer Res,2017,24(1):73-83. DOI:10.1158/1078-0432. CCR-16-2433.
[15] Centelles MN,Wright M,So PW,et al. Image guided thermosensitive liposomes for focused ultrasound drug delivery:using NIRF labelled lipids and topotecan to visualise the effects of hyperthermia in tumours[J]. J Control Rel,2018,280:87-98. DOI:10.1016/j.jconrel.2018.04.047.
[16] Lin W,Xie X,Yang Y,et al. Thermosensitive magnetic liposomes with doxorubicin-cell-penetrating peptides conjugate for enhanced and targeted cancer therapy[J]. Drug Del,2016,23(9):3436-3443. DOI:10.1080/10717544.2016.1189983.
[17] Mikhail AS,Negussie AH,Pritchard WF,et al. Lyso-thermosensitive liposomal doxorubicin for treatment of bladder cancer[J]. Int J Hyperther,2017,33(7):733-740. DOI:10.1080/02656736.2017.1315459.
[18] Liu Y,Xu M,Chen Q,et al. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser[J]. Int J Nanomed,2015,10:4747-4761. DOI:10.2147/IJN. S82940.
[19] Kannadorai RK,Chiew GG,Luo KQ,et al. Dual functions of gold nanorods as photothermal agent and autofluorescence enhancer to track cell death during plasmonic photothermal therapy[J]. Cancer Lett,2015,357(1):152-159. DOI:10.1016/j.canlet.2014.11.022.
[20] Yan L,Qiu L. Indocyanine green targeted micelles with improved stability for near-infrared image-guided photothermal tumor therapy[J]. Nanomedicine,2015,10(3):361-373. DOI:10.2217/nnm.14.118.
[21] Yang J,Choi J,Bang D,et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells[J]. Angew Chem Int Ed Engl,2011,50(2):441-444. DOI:10.1002/anie.201005075.
[22] Zha Z,Yue X,Ren Q,et al. Uniformpolypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells[J]. Adv Mater,2013,25(5):777-782. DOI:10.1002/adma.201202211.
[23] Smith B,Lyakhov I,Loomis K,et al. Hyperthermia-triggered intracellular delivery of anticancer agent to HER-2+ cells by HER-2-specific affibody (ZHER-2-GS-Cys)-conjugated thermosensitive liposomes (HER-2+Affisomes)[J]. J Control Rel,2011,153(2):187-194. DOI:10.1016/j.jconrel.2011.04.005.
[24] Piao JG,Wang L,Gao F,et al. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy[J]. Acs Nano,2014,8(10):10414-10425. DOI:10.1021/nn503779d
[25] Piao JG,Liu D,Hu K,et al. Cooperative nanoparticle system for photothermal tumor treatment without skin damage[J]. Acs Appl Mater Interfaces,2016,8(4):2847-2856. DOI:10.1021/acsami.5b11664.