A study of an independent dose verification software for brachytherapy
Wang Xianliang1, Wang Pei1, Li Churong1, Li Jie1, Kang Shengwei1, Liu Min1, Tang Ting1, Wu Zhangwen2, Hou Qing2
1Department of Radiation Oncology,Sichuan Cancer Hospital& Institute,Chengdu,610041,China; 2Key Laboratory of Radiation Physics and Technology,Institute of Nuclear Science and Technology,Sichuan University,Chengdu,610064,China
Abstract:Objective To report an implementation method and results of an independent brachytherapy dose verification software (DVS). Methods The DVS was developed based on Visual C++ and the modular structure design was adopted. The DICOM RT files exported from the treatment planning system (TPS) were automatically loaded into the DVS. The TG-43 formalism was employed for dose calculation. Six cervical cancer patients who underwent brachytherapy were retrospectively selected to test the DVS. Different applicators were utilized for each patient. Dosimetric parameters and γ analysis (0.1cm, 5%) were used to evaluate the dose difference between the DVS and the TPS. Results Compared with the TPS dose,the γ pass rates of the doses calculated by the DVS were higher than 98%. For CTV, the dosimetric differences were less than 0.29% and 0.53% for D100% and D90%. For bladder, rectum and sigmoid, the agreement of D0.1cm3, D1cm3and D2cm3 within a 0.5% level. Conclusion With minimal human-computer interactions, the DVS can verify the accuracy of dose calculated by TPS for brachytherapy.
Wang Xianliang,Wang Pei,Li Churong et al. A study of an independent dose verification software for brachytherapy[J]. Chinese Journal of Radiation Oncology, 2020, 29(2): 131-135.
[1] Erickson B A,Demanes DJ,Ibbott GS,et al. American Society for Radiation Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the performance of high-dose-rate brachytherapy[J]. Int J Radiat Oncol Biol Phys,2011,79(3):641-649. DOI:10.1016/j.ijrobp.2010.08.046.
[2] Nath R,Anderson LL,Meli JA,et al. Code of practice for brachytherapy physics:Report of the AAPM Radiation Therapy Committee Task Group No.56[J]. Med Phys,1997,24(10):1557-1598. DOI:10.1118/1.597966.
[3] Law MY,Liu B. Informatics in radiology:DICOM-RT and its utilization in radiation therapy[J]. Radiographics,2009,29(3):655. DOI:10.1148/rg.293075172.
[4] Nirogi R,Kandikere V,Bhyrapuneni G,et al. Dosimetry of interstitial brachytherapy sources:Recommendation of the AAPM Radiation Therapy Committee Task Group No.43[J]. Med Phys,1995,22(8):209-234. DOI:10.1118/1.598869.
[5] Perez-Calatayud J,Ballester F,Das RK,et al. Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV:report of the AAPM and ESTRO[J]. Med Phys,2015,39(5):2904. DOI:10.1118/1.3703892.
[6] Jamema SV,Sharma S,Mahantshetty U,et al. Comparison of IPSA with dose-point optimization and manual optimization for interstitial template brachytherapy for gynecologic cancers[J]. Brachytherapy,2011,10(4):306-312. DOI:10.1016/j.brachy.2010.08.011.
[7] Potter R,Haie-Meder C,Van Limbergen E,et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (Ⅱ):concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy,radiation physics,radiobiology[J]. Radiother Oncol,2006,78(1):67-77. DOI:10.1016/j.radonc.2005.11.014.
[8] Venselaar J. A practical guide to quality control of brachytherapy equipment[M]. Brussels,2004.
[9] Lachaine ME,Gorman JC,Palisca MG. A fast,independent dose check of HDR plans[J]. J Appl Clin Med Phys,2003,4(2):149-155. DOI:10.1120/1.1561292.
[10] Carmona V,Perez-Calatayud J,Lliso F,et al. A program for the independent verification of brachytherapy planning system calculations[J]. J Contemp Brachytherapy,2010,2(3):129-133. DOI:10.5114/jcb.2010.16924.
[11] Cohen GAN,Amols HI,Zaider M. An independent dose-to-point calculation program for the verification of high-dose-rate brachytherapy treatment planning[J]. Int J Radiat Oncol Biol Phys,2000,48(4):1251-1258.
[12] Safian NAM,Abdullah NH,Abdullah R,et al. Verification of Oncentra brachytherapy planning using independent calculation[J]. J Phys:Conf Ser,2016,694(1):012003. DOI:10.1088/1742-6596/694/1/012003.
[13] 全国医用电器标准化技术委员会放疗、核医学和放射剂量学设备分技术委员会. 自动控制式近距离后装设备放疗计划系统性能和试验方法[S].北京:国家食品药品监督管理总局,2016.
National Medical Electrical Standardization Technical Committee sub-Committee on Radiotherapy, Nuclear Medicine and Dosimetry Equipment. Radiotherapy treatment planning system for automatically-controlled brachytherapy afterloading equipment-Characteristics and test methods[S]. Beijing:State Food and Drug Administration,2016.
[14] 王先良,袁珂,唐斌,等. GZP型60Co源剂量学参数的蒙特卡洛模拟[J]. 中华放射肿瘤学杂志,2016,25(5):489-495. DOI:10.3760/cma.j.issn.1004-4221.2016.05.015.
Wang XL,Yuan K,Tang B,et al. A Monte Carlo-based dosimetric study of the GZP 60Co source[J]. Chin J Radiat Oncol,2016,25(5):489-495. DOI:10.3760/cma.j.issn.1004-4221.2016.05.015.
[15] 王先良,刘操,侯氢. 用CUDA实现放疗中剂量的快速计算[J]. 生物医学工程学杂志,2011(5):881-885.
Wang XL,Liu C,Hou Q. CUDA-based fast dose calculation in radiotherapy[J]. J Bio Eng, 2011(5):881-885.
[16] 李久楷,朱俊,宁交贤. MPI并行计算性能的研究[J]. 四川大学学报(自然科学版),2009,46(6):1659-1662. DOI:10.3969/j.issn.0490-6756.2009.06.018.
Li JK,Zhu J,Ning JX. Research on MPI Parallel Computing Performance[J]. J Sichuan University (Nat Sci Ed), 2009, 46(6):1659-1662. DOI:10.3969/j.issn.0490-6756.2009.06.018.