Abstract:Objective To study the relationship between tumor size,source intensity,prescription dose and source dwell time in the after-loading treatment plan,and to establish a method that can be used for rapid quality control of after-loading plans.Methods The all of gynecological cancer patients treated in this hospital were selected:84 cases of all three tubes of Fletcher applicator,58 cases of uterine alone and 39 cases of vaginal applicator. Each patient was scanned with CT before treatment. Contouring the target and organs at risk,the treatment plan was optimized using IPSA. Record the source strength,prescription dose,source dwell time,and tumor volume of the prescribed dose for each case. Calculate CI values and Rv. The k-value analyzes the CI distribution characteristics and the correlation with the Rv value. In addition,46 cases of gynecologic tumor patients were used to verify the method.Results The fitting index of the after-loading scheme of the three applicators showed a normal distribution. The mean value of the Fletcher applicator CI was 0.720±0.067,the k value was 1 394,Rvalue was 0.894. The mean value of the uterine alone CI was 0.697±0.076,the k value was 1 428,R=0.940,the mean value of the vaginal applicator CI was 0.742±0.067,the k value was 1 362,and R=0.909.Conclusions Using this method,it can quickly assess whether the planned target volume,radiation source intensity,prescription dose and treatment time match,and find the cause of deviation based on the feedback Results to ensure that the after-loading treatment plan can be quickly,accurately,and efficiently implemented according to clinical requirements.
Ji Tianlong,Zhao Jing,Shen Hao et al. A fast quality assurance method for three-dimensional Afterloading treatment plan[J]. Chinese Journal of Radiation Oncology, 2019, 28(7): 543-546.
[1]Erickson BA,Bittner NH,Chadha M,et al. The American College of Radiology and the American Brachytherapy Society practice parameter for the performance of radionuclide-based high-dose-rate brachytherapy[J]. Brachytherapy,2017,16(1):75-84. DOI:10.1016/j.brachy.2016.05.006 [2]Harkenrider MM,Alite F,Silva SR,et al. Image-Based Brachytherapy for the Treatment of Cervical Cancer[J]. Int J Radiat Oncol Biol Phys,2015,92(4):921-934. DOI:10.1016/j.ijrobp.2015.03.010. [3]Mazeron R,Castelnau-Marchand P,Escande A,et al. Tumor dose-volume response in image-guided adaptive brachytherapy for cervical cancer:A meta-regression analysis[J]. Brachytherapy,2016,15(5):537-542. DOI:10.1016/j.brachy.2016.05.009. [4]Soliman A S,Owrangi A,Ravi A,et al. Metal artefacts in MRI-guided brachytherapy of cervical cancer[J]. J Contemp Brachyther,2016,8(4):363-369. DOI:10.5114/jcb.2016.61817. [5]Derks K,Steenhuijsen J,van den Berg HA,et al. Impact of brachytherapy technique (2 d versus 3 d) on outcome following radiotherapy of cervical cancer[J]. J Contemp Brachytherapy,2018,10(1):17-25. DOI:10.5114/jcb.2018.73955. [6]Liu Z,Liang H,Wang X,et al. Comparison of graphical optimization or IPSA for improving brachytheraphy plans associated with inadequate target coverage for cervical cancer[J]. Sci Rep,2017,7(1):16423. DOI:10.1097/IGC.0000000000000929. [7]Ribeiro I,Janssen H,De Brabandere M,et al. Long term experience with 3 d image guided brachytherapy and clinical outcome in cervical cancer patients[J]. Radiother Oncol,2016,120(3):447-454. DOI:10.1016/j.radonc.2016.04.016. [8]Lee S,Rodney E,Traughber B,et al. Evaluation of interfractional variation of organs and displacement of catheters during high-dose-rate interstitial brachytherapy for gynecologic malignancies[J]. Brachytherapy,2017,16(6):1192-1198. DOI:10.1016/j.brachy.2017.09.001. [9]Pinnaduwage DS,Cunha JA,Weinberg V,et al. A dosimetric evaluation of using a single treatment plan for multiple treatment fractions within a given applicator insertion ingynecologic brachytherapy[J]. Brachytherapy,2013,12(5):487-494. DOI:10.1016/j.brachy.2013.02.003. [10]Das RK,Bradley KA,Nelson IA,et al. Quality assurance of treatment plans for interstitial and intracavitary high-dose-rate brachytherapy[J]. Brachytherapy,2006,5(1):56-60. DOI:10.1016/j.brachy.2005.11.002. [11]Smith RL,Panettieri V,Lancaster C,et al. The influence of the dwell time deviation constraint (DTDC) parameter on dosimetry with IPSA optimisation for HDR prostate brachytherapy[J]. Australas Phys Eng Sci Med,2015,38(1):55-61. DOI:10.1007/s13246-014-0317-2. [12]王先良,吴俊翔,袁珂,等. 驻留点权重标准差与施源器位置不确定性对宫颈癌患者剂量影响分析[J]. 中华放射肿瘤学杂志,2017,26(4):419-422. DOI:10.3760/cma.j.issn.1004-4221.2017.04.011. Wang XL,Wu JX,Yuan K,et al. Analysis of dose effect of residence point weight standard deviation and uncertainty of source location on patients with cervical cancer[J]. Chin J Radiat Oncol,2017,26(4):419-422. DOI:10.3760/cma.j.issn.1004-4221.2017.04.011. [13]纪天龙,赵晶,李权,等. 驻留时间离差限制参数对三维后装计划的影响分析[J]. 中国医学物理学杂志,2018,35(8):900-904. DOI:10.3969/j.issn.1005-202X.2018.08.007. Ji TL,Zhao J,Li Q,et al. Analysis of the influence of residence time deviation restriction parameters on three-dimensional afterloading plan[J]. Chin J Med Phys,2018,35(8):900-904. DOI:10.3969/j.issn.1005-202X.2018.08.007. [14]Terribilini D,Vitzthum V,Volken W,et al. Performance evaluation of a collapsed cone dose calculation algorithm for HDR Ir-192 of APBI treatments[J]. Med Phys,2017,44(10):5475-5485. DOI:10.1002/mp.12490.