Objective Because of statistical noise in Monte Carlo dose calculations,the effective point doses may not be accurately calculated. A user-defined sphere volume was adopted to substitute the effective point to take sphere sampling around the effective point,which minimize the random errors and improve the accuracy of statistical dose. Methods Direct dose measurements were performed at 0°and 90°using a 0.125 cm3 Semiflex ionization chamber (IC) 31010 isocentrically placed in the center of a homogeneous Cylindric sliced RW3 phantom (PTW,Germany).In the scanned CT phantom series,the sensitive volume length of the IC (6.5 mm) was delineated and the isocenter was defined as the simulated effective point. All beams were simulated in the treatment planning system (TPS) in accordance to the measured model. The grid spacing was calculated by 2 mm voxels and the relative standard deviation should be ≤0.5%.The statistical and measured doses were statistically compared among three IC models with different electron densities (ED;esophageal lumen ED=0.210 g/cm3 for model A,air ED=0.001 g/cm3 for model B and the default CT scanned ED for model C) at different sampling sphere radius (2.5,2.0,1.5 and 1.0 mm) to evaluate the effect of Monte Carlo.calculation uncertainty upon the dose accuracy. Results In the Monaco TPS,the statistical value was in the highest accordance with the measured value with an absolute average deviation of 0.49% when the IC was set as esophageal lumen ED=0.210 g/cm3 and the sampling sphere radius was 1.5 mm. When the IC was set as air ED=0.001 g/cm3 and default CT scanned ED,and,the recommended statistical sampling sphere radius was 2.5 mm,the absolute average deviations were 0.61% and 0.70%. Conclusion In the Monaco TPS,the calculation model with an ED of 0.210 g/cm3 and a sampling radius of 1.5 mm is recommended for the ionization chamber 31010 to substitute the effective point dose measurement to decrease the random stochastic errors of Monte Carlo.
Zhang Ruohui,Bai Wenwen,Gao Yulan et al. Quantification and construction of the effective point calculation model of ionization chamber in Monacao treatment planning system[J]. Chinese Journal of Radiation Oncology, 2018, 27(10): 916-919.
[1] 赵艳群,尹刚,王先良,等.蒙特卡罗系统验证PBC和CCC算法精确度的临床研究[J].中华放射肿瘤学杂志,2016,25(1):62-66.DOI:10.3760/cma.j.issn.1004-4221.2016.01.016.
Zhao YQ,Yin G,Wang XL,et al. Clinical study of Monte Carlo system to verify the accuracy of PBC and CCC algorithms[J].Chin J Radiat Oncol,2016,25(1):62-66.DOI:10.3760/cma.j.issn.1004-4221.2016.01.016.
[2] Takahashi WHY,Saotome N,Iwai Y,et al. Evaluation of heterogeneity dose distributions for Stereotactic Radiotherapy (SRT):comparison of commercially available Monte Carlo dose calculation with other algorithms[J].Radiat Oncol,2012,7(20):1-8.DOI:10.1186/1748-717X-7-20.
[3] Evants JSPM.Assessing the effect of electron density in photon dose calculations[J].Med Phys.2006,33(2):540-552.
[4] Chetty IJ,Curran B,Cygler JE,et al. Report of the AAPM Task Group No.105:Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning[J].Med Phys,2007,34(12):4818-4853.DOI:10.1118/1.2795842.
[5] IMPAC Medical Systems I.Monaco Training Guide[M].Crawley:Elekta Limited,2015:854.
[6] Leybovich LB,Sethi A,Dogan N.Comparison of ionization chambers of various volumes for IMRT absolute dose verification[J].Med Phys,2003,30(2):119-123.
[7] Day M,Greene D,Massey J.Use of a perspex sheath for ionization chamber measurements in a water phantom[J].Phys Med Biol,1965,10(1):111-112.
[8] 冯宁远,余耘.气腔对上呼吸道肿瘤放疗的影响[J].中华放射肿瘤学杂志,1988,2(2):44-45.
Feng NY,Yu Y.Effect of gas cavity on radiotherapy of upper respiratory tract tumor[J].Chin J Radiat Oncol,1988,2(2):44-45.
[9] Tsukihara M,Noto Y,Sasamoto R,et al. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections:an anthropomorphic phantom study of radiotherapy treatment planning[J].Med Phys,2015,42(3):1378-1388.DOI:10.1118/1.4908207.
[10] 张若辉,迟子锋,白文文,等.Monaco治疗计划系统中两种治疗床模型的比较[J].中华放射肿瘤学杂志,2016,25(6):618-621.DOI:10.3760/cma.j.issn.1004-4221.2016.06.016.
Zhang RH,Chi ZF,Bai WW,et al. Comparison of two kinds of treatment bed models in the treatment Planning system[J].Chin J Radiat Oncol,2016,25(6):618-621.DOI:10.3760/cma.j.issn.1004-4221.2016.06.016.
[11] 李建,康盛伟,祁国海,等.空腔和非均匀组织对不同照射技术的剂量学影响[J].中华放射肿瘤学杂志,2014,23(5):437-440.DOI:10.3760/cma.j.issn.1004-4221.2014.05.019.
Li J,Kang SW,Qi GH,et al. Dosimetric effects of cavity and nonuniform tissue on different irradiation techniques[J]Chin J Radiat Oncol,2014,23(5):437-440.DOI:10.3760/cma.j.issn.1004-4221.2014.05.019.
[12] 张若辉,白文文,樊晓妹,等.Monaco计划系统中构建治疗床模型对放疗剂量控制意义探讨[J].中华肿瘤防治杂志,2016,23(2):105-109.DOI:10.16073/j.cnki.cjcpt.2016.02.013.
Zhang RH,Bai WW Fan XM,et al. onaco Planning system to discuss the significance of constructing treatment bed model for radiotherapy dose control[J].Chin J Cancer Prevent Treat,2016,23(2):105-109.DOI:10.16073/j.cnki.cjcpt.2016.02.013.
[13] Scott AJ,Kumar S,Nahum AE,et al. Characterizing the influence of detector density on dosimeter response in non-equilibrium small photon fields[J].Phys Med Biol,2012,57(14):4461-4476.DOI:10.1088/0031-9155/57/14/4461.
[14] Underwood TS,Winter HC,Hill MA,et al. Mass-density compensation can improve the performance of a range of different detectors under non-equilibrium conditions[J].Phys Med Biol.2013,58(23):8295-8310.DOI:10.1088/0031-9155/58/23/8295.
[15] 李高峰,朱庙生,吴钦宏,等.逆向计划调强适形放射治疗的质量保证[J].中华放射肿瘤学杂志.2002,11(3):190-193.DOI:10.3760/j.issn:1004-4221.2002.03.014.
Li GF,Zhu MS,Wu QH,et al. Clincal quality assurance of intensity modulated radiation therapy[J].Chin J Radiat Oncol,2002,11(3):190-193.DOI:10.3760/j.issn:1004-4221.2002.03.014.