Objective To compare the pre-and post-operative tumor target volume and to examine the consistency in physical dosimetric parameters of organs at risk (OAR) following 3D-printed coplanar template (3D-PCT)-assisted and CT-guided radioactive seed implantation. Methods The 3D-printed coplanar template was designed using a computer software, and the coordinate system was established where the center was used as the basis for setting the x axis and y axis. Crosses defining the center of treatment were drawn on the patient’s body and matched with the corresponding central point, x axis, and y axis of the coplanar template. 3D-PCT-assisted and CT-guided radioactive seed implantation was performed based on the pre-operative plan, and the pre-operative, operative, and post-operative plans were designed to evaluate the target tumor volume and the normal dose received by the tissues. In addition, dosimetric parameters, including D90(minimum dose received by 90% of the gross target volume), V100, V150, V200(percentage of GTV that received 100%, 150%, and 200% of the prescribed dose, respectively), minimum peripheral dose (MPD), conformal index (CI), external index (EI), and homogeneity index (HI) in the pre-operative and post-operative plans were also assessed and compared using the Wilcoxon test. Results Fourteen patients treated in our institution from August to October, 2016 were included in this study. The median age of the patients was 61.5 years, and the median Karnofsky Performance Scale score was 80. A total of 14 lesions from the 14 patients were treated by seed implantation in the neck (n=4), chest (n=3), abdomen (n=5), and pelvis (n=2). Of the 14 patients that underwent implantation, 8 had previously received radiation therapy, and 6 had not received radiation therapy. Dosage optimization was performed for all patients during the operation. The median activity of the implanted seeds was 0.625 mCi (0.55-0.75 mCi,1 Ci=3.7×1010 Bq), and the preoperatively planned median number of needling and implanted seeds were 9(4-34) and 45.5(10-162), respectively. However, the actual median number of needling and implanted seeds were 9.5(4-34) and 45.5(10-162), respectively. Dosimetric analysis showed that there were no significant changes in tumor volume (P=0.135), D90(P=0.208), MPD (P=0.104), V100(P=0.542), V150(P=0.754), V200(P=0.583), CI (P=0.426), EI (P=0.326), and HI (P=0.952) after implantation. Conclusions 3D-PCT guidance and dosage optimization can result in good consistency between pre-and post-operative plans for radioactive seed implantation. 3D-PCT is a convenient and cheap technique suitable for large-scale clinical application.
Peng Ran,Jiang Yuliang,Ji Zhe et al. Dosimetric analysis of 3D-printed coplanar template-assisted and CT-guided 125I seed implantation for the treatment of malignant tumors[J]. Chinese Journal of Radiation Oncology, 2017, 26(9): 1062-1066.
[1] Wang JJ,Yuan HS,Li JN,et al. CT-guided radioactive seed implantation for recurrent rectal carcinoma after multiple therapy[J].Med Oncol,2010,27(2):421-429.DOI:10.1007/s12032-009-9227-7.PMID:19415534.
[2] Lin L,Wang J,Jiang Y,et al. Interstitial 125I Seed Implantation for Cervical Lymph Node Recurrence after Multimodal Treatment of Thoracic Esophageal Squamous Cell Carcinoma[J].Technol Cancer Res Treat,2015,14(2):201-207.DOI:10.7785/tcrt.2012.500409.PMID:24502550.
[3] 王皓,王俊杰,袁慧书,等.CT引导125I粒子植入治疗局部复发直肠癌疗效和剂量学分析[J].中华放射肿瘤学杂志,2016,25(10):1096-1099.DOI:10.3760/cma.j.issn.1004-4221.2016.10.016.
Wang H,Wang JJ,Yuan HS,et al. Efficacy and dosimetry of computed tomography image-guided 125I radioactive seed implantation for locally recurrent rectal cancer[J]. Chin J Radiat Oncol,2016.25(10):1096-1099.DOI:10.3760/cma.j.issn.1004-4221.2016.10.016.
[4] 姜玉良,马月,王俊杰,等.125I粒子治疗头颈部肿瘤颈淋巴结放疗后复发的结果分析[J].中华放射肿瘤学杂志,2011,20(2):91-94.DOI:10.3760/cma.j.issn.1004-4221.2011.02.002.
Jiang YL,Ma Y,Wang JJ,et al. Implantation of 125I seeds for recurrence cervical node of head and neck tumor after external beam radiotherapy[J].Chin J Radiat Oncol,2011,20(2):91-94.DOI:10.3760/cma.j.issn.1004-4221.2011.02.002.
[5] 王俊杰,修典荣,冉维强,等.术中超声引导放射性—(125)Ⅰ粒子植入治疗胰腺癌[J].中华放射医学与防护杂志,2005,25(5):441-443.DOI:10.3760/cma.j.issn.0254-5098.2005.05.011.
Wang JJ,Xiu DR,Ran WQ,et al. Iodine-125 seed implantation for unresectable pancreatic carcinoma guided by intraoperative ultrasound[J].Chin J Radiol Med Prot,2005,25(5):441-443.DOI:10.3760/cma.j.issn.0254-5098.2005.05.011.
[6] 柳晨,王俊杰,孟娜,等.CT引导下放射性125I粒子置入治疗脊柱转移性肿瘤的价值[J].中国脊柱脊髓杂志,2011,21(3):226-229.DOI:10.3969/j.issn.1004-406X.2011.03.12.
Liu C,Wang JJ,Meng N,et al. CT-guide interstitial iodine-125 seed implantation for metastatic spine tumor[J].Chinese Journal of Spine and Spinal Cord,2011,21(3):226-229.DOI:10.3969/j.issn.1004-406X.2011.03.12.
[7] 刘树铭,张建国,黄明伟,等.个体化模板辅助颅底区永久性组织间近距离治疗的可行性研究[J].中华放射医学与防护杂志,2013,33(1):42-45.DOI:10.3760/cma.j.issn.0254-5098.2013.01.011.
Liu SM,Zhang JG,Huang MW,et al. Feasibility of permanent interstitial brachytherapy for skull base region through individual template assistance[J].Chin J Radiat Oncol,2013,33(1):42-45.DOI:10.3760/cma.j.issn.0254-5098.2013.01.011.
[8] 赵一姣,王勇,黄明伟,等.近距离放疗用个性化导板的数字化设计方法[J].中华口腔医学杂志,2014,49(2):115-118.DOI:10.3760/cma.j.issn.1002-0098.2014.02.011.
Zhao YJ,Wang Y,Huang MW,et al. Digital Designing Method of an Individual Template for Brachytherapy.[J].Chin J Stomatol,2014,49(2):115-118.DOI:10.3760/cma.j.issn.1002-0098.2014.02.011.
[9] 吉喆,姜玉良,郭福新,等.3D打印个体化非共面模板辅助放射性粒子植入治疗恶性肿瘤的剂量学验证[J].中华放射医学与防护杂志,2016,36(9):662-666.DOI:10.3760/cma.j.issn.0254-5098.2016.09.005.
Ji Z,Jiang YL,Guo FX,et al. Dosimetry verification of radioactive seed implantation for malignant tumor assisted by 3D printing individual guide template[J].Chin J Radiol Med Prot,2016.36(9):662-666.DOI:10.3760/cma.j.issn.0254-5098.2016.09.005.
[10] 姜玉良,王皓,吉喆,等.CT引导辅助3D打印个体化非共面模板指导125I粒子治疗盆腔复发肿瘤剂量学研究[J].中华放射肿瘤学杂志,2016,25(9):959-964.DOI:10.3760/cma.j.issn.1004-4221.2016.09.012.
Jiang YL,Wang H,Ji Z,et al. Computed tomography image-guided and personalized 3D printed template-assisted 125-iodine seed implantation for recurrent pelvic tumor:a dosimetric study[J].Chin J Radiat Oncol,2016,25(9):959-964.DOI:10.3760/cma.j.issn.1004-4221.2016.09.012.
[11] Davis BJ,Horwitz EM,Lee WR,et al. American Brachytherapy Society consensus guidelines for transrectal ultrasound-guided permanent prostate brachytherapy[J].Brachytherapy,2012,11(1):6-19.DOI:10.1016/j.brachy.2011.07.005.PMID:22265434.
[12] Nag S,Beyer D,Friedland J,et al. American Brachytherapy Society (ABS) recommendations for transperineal permanent brachytherapy of prostate cancer[J].Int J Radiat Oncol Biol Phys,1999,44(4):789-799.DOI:10.1016/S0360-3016(99)00069-3.PMID:10386635.
[13] Green Thomas C,Horzewski Michael J.Pivoting needle template apparatus for brachytherapy treatment of prostate disease and methods of use. In:NEOSEED TECHNOLOGY LLC,2000.
[14] 霍彬,侯朝华,叶剑飞,等.CT引导术中实时计划对胸部肿瘤125I粒子植入治疗的价值[J].中华放射肿瘤学杂志,2013,22(5):400-402.
Huo B,Hou CH,Ye JF,et al. The study of intraoperative real-time planning by CT-guided in 125I seed implantation for thoracic malignancie[J].Chin J Radiat Oncol,2013,22(5):400-402.
[15] 殷蔚伯,余子豪,徐国镇,等.肿瘤放疗学[M].北京:中国协和医科大学出版社,2008.
Yin WB,Yu ZH,Xu GZ,et al. Radiation Oncology[M].Beijing:Peking Union Medical College Press,2008.
[16] Yu Y,Waterman FM,Suntharalingam N,et al. Limitations of the minimum peripheral dose as a parameter for dose specification in permanent 125I prostate implants[J].Int J Radiat Oncol Biol Phys,1996,34(3):717-725.PMID:8621297.