Objective To investigate the dosimetric difference between inverse planning simulated annealing (IPSA) and manual optimized plan for isodose line in interstitial brachytherapy for locally advanced cervical cancer and to provide a better optimization method for clinical application. Methods A total of 104 patients with cervical cancer were enrolled in this study. They received pelvic external beam radiotherapy and interstitial brachytherapy in five fractions. Both IPSA and manual optimized plan for isodose line were used to optimize the dose in each fraction. Dose volume parameters of the two plans were compared to analyze the dosimetric outcome by paired t-test. Resutls There were nosignificant differences in mean D90 and D100 for high-risk clinical target volume (HR-CTV) and D90 for intermediate-risk clinical target volume (IR-CTV) between the two groups (P>0.05). The IPSA group had a significantly higher D100 for IR-CTV than the manual optimized group (58.36±2.06 Gy vs. 53.99±2.17 Gy, P=0.025). For organs at risk, the IPSA group had asignificantly lower mean rectum D2cc and a significantly higher bladder D2cc than the manual optimized group (68.53±2.85 Gy vs. 71.77±1.79 Gy, P=0.002;80.49±3.36 Gy vs. 78.71±2.64 Gy, P=0.034). There was no significant difference in sigmoid D2cc between the two groups (P>0.05). The IPSA group had significantly higher relative dose homogeneity index (HI) and conformity index (CI) of radiation dose for target volume than the manual optimized group (P<0.05), and there was nosignificant difference in overdose volume index (OI) between the two groups (P=0.107). ConclusionsCompared with manual optimized plan for isodose line, IPSA can improve the dose distribution of tumor tissue, reduce mean rectum D2cc, and increase CI and HI, so it is a preferable optimized treatment planning method in clinical application.
Lin Xia,Liu Zhongshan,Wang Jiapeng et al. Comparison of manual and inverse optimization for CT guided interstitial brachytherapy in locallyadvanced cervical cancer[J]. Chinese Journal of Radiation Oncology, 2017, 26(11): 1288-1291.
[1] P tter R,Georg P,Dimopoulos JCA,et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer[J].Radiother Oncol,2011,100(1):116-123.DOI:10.1016/j.radonc.2011.07.012.
[2] Dimopoulos JCA,P tter R,Lang S,et al. Dose-effect relationship for local control of cervical cancer by magnetic resonance image guided brachytherapy[J].Radiother Oncol,2009,93(2):311-315.DOI:10.1016/j.radonc.2009.07.001.
[3] Han K,Milosevic M,Fyles A,et al. Trends in the utilization of brachytherapy in cervical cancer in the United States[J].Int J Radiat Oncol Biol Phys,2013,87(1):111-119.DOI:10.1016/j.ijrobp.2013.05.033.
[4] Charra-Brunaud C,Harter V,Delannes M,et al. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France:results of the national French STIC prospective study[J].Radiother Oncol,2012,103(2):305-313.DOI:10.1016/j.radonc.2012.04.007.
[5] Eifel PJ,Moughan J,Erickson B,et al. Patterns of radiotherapy practice for patients with carcinoma of the uterine cervix:A patterns of care study[J].Int J Radiol Oncol Biol Phys,2004,60(4):1144-1153.DOI:10.1016/j.ijrobp.2004.04.063.
[6] Viswanathan AN,Moughan J,Small W,et al. The quality of cervical cancer brachytherapy implantation and the impact on local recurrence and disease-free survival in Radiation Therapy Oncology Group prospective trials 0116 and 0128[J].Int J Gynecol Cancer,2012,22(1):123-131.DOI:10.1097/IGC.0b013e31823ae3c9.
[7] Brooks S,Bownes P,Lowe J,et al. Cervical brachytherapy utilizing ring applicator:comparison of standard and conformal loading[J].Int J Radiat Oncol Biol Phys,2005,63(3):934-939.DOI:10.1016/j.ijrobp.2005.07.963.
[8] Lessard E,Hsu IC,Pouliot J.Inverse planning for interstitial gynecologic template brachytherapy:truly anatomy-based planning[J].Int J Radiat Oncol Biol Phys,2002,54(4):1243-1251.DOI:10.1016/S0360-3016(02)03802-6.
[9] Dewitt KD,Hsu ICJ,Speight J,et al.3D inverse treatment planning for the tandem and ovoid applicator in cervical cancer[J].Int J Radiat Oncol Biol Phys,2005,63(4):1270-1274.DOI:10.1016/j.ijrobp.2005.07.972.
[10] Haie-Meder C,P tter R,van Limbergen E,et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I):concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV[J].Radiother Oncol,2005,74(3):235-245.DOI:10.1016/j.radonc.2004.12.015.
[11] P tter R,Haie-Meder C,van Limbergen E,et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (Ⅱ):concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D imagebased anatomy,radiation physics,radiobiology[J].Radiother Oncol,2006,78(1):67-77.DOI:10.1016/j.radonc.2005.11.014.
[12] Shin KH,Kim TH,Cho JK,et al. CT-guided intracavitary radiotherapy for cervical cancer:comparison of conventional point a plan with clinical target volume-based three-dimensional plan using dose-volume parameters[J].Int J Radiat Oncol Biol Phys,2006,64(1):197-204.DOI:10.1016/j.ijrobp.2005.06.015.
[13] Pecorelli S.Revised FIGO staging for carcinoma of the vulva,cervix,and endometrium[J].Int J Gynecol Obstet,2009,105(2):103-104.DOI:10.1016/j.ijgo.2009.02.012.
[14] Lang S,Nulens A,Briot E,et al. Intercomparison of treatment concepts for MR image assisted brachytherapy of cervical carcinoma based on GYN GEC-ESTRO recommendations[J].Radiother Oncol,2006,78(2):185-193.DOI:10.1016/j.radonc.2006.01.001.
[15] Georg P,Lang S,Dimopoulos JCA,et al. Dose-volume histogram parameters and late side effects in magnetic resonance image-guided adaptive cervical cancer brachytherapy[J].Int J Radiat Oncol Biol Phys,2011,79(2):356-362.DOI:10.1016/j.ijrobp.2009.11.002.
[16] Georg P,P tter R,Georg D,et al. Dose effect relationship for late side effects of the rectum and urinary bladder in magnetic resonance image-guided adaptive cervix cancer brachytherapy[J].Int J Radiat Oncol Biol Phys,2012,82(2):653-657.DOI:10.1016/j.ijrobp.2010.12.029.
[17] Wu A,Ulin K,Sternick ES.A dose homogeneity index for evaluating 192Ir interstitial breast implants[J].Med Phys,1988,15(1):104-107.DOI:10.1118/1.596152.
[18] Anbumani S,Anchineyan P,Narayanasamy AN,et al. Treatment planning methods in high dose rate interstitial brachytherapy of carcinoma cervix:a dosimetric and radiobiological analysis[J].ISRN Oncol,2014,2014:125020.DOI:10.1155/2014/125020.
[19] Bahaduri Y,Constantinescu C,Ezzat M,et al.3D anatomy-based planning optimization for HDR brachytherapy of cervix cancer[J].Saudi J Obstet Gynecol,2009,11(2):1430.
[20] Jamema SV,Kirisits C,Mahantshetty U,et al. Comparison of DVH parameters and loading patterns of standard loading,manual and inverse optimization for intracavitary brachytherapy on a subset of tandem/ovoid cases[J].Radiother Oncol,2010,97(3):501-506.DOI:10.1016/j.radonc.2010.08.011.
[21] Chajon E,Dumas I,Touleimat M,et al. Inverse planning approach for 3-D MRI-based pulse-dose rate intracavitary brachytherapy in cervix cancer[J].Int J Radiat Oncol Biol Phys,2007,69(3):955-961.DOI:10.1016/j.ijrobp.2007.07.2321.
[22] Vikram B,Deore S,Beitler JJ,et al. The relationship between dose heterogeneity (“hot”spots) and complications following high-dose rate brachytherapy[J].Int J Radiat Oncol Biol Phys,1999,43(5):983-987.DOI:10.1016/S0360-3016(98)00550-1.
[23] Bhandare N.Comparing DVH parameters of 3D inverse planning simulated annealing (IPSA) with manual-graphical optimization in the treatment of uterine cervix with HDR brachytherapy using a tandem-and-ring applicator[J].Int J Radiat Oncol Biol Phys,2014,90(1 Suppl):S833-834.DOI:10.1016/j.ijrobp.2014.05.2395.