[an error occurred while processing this directive]|[an error occurred while processing this directive]
影像组学在精准放疗中的应用
胡盼盼,王佳舟,胡伟刚,章真
200032 上海,复旦大学上海医学院肿瘤学系 复旦大学附属肿瘤医院放疗科
Radiomics in Precision Radiotherapy
Hu Panpan,Wang Jiazhou,Hu Weigang,Zhang Zhen
Department of Radiation Oncology,Fudan University Shanghai Medical College;Department of Radiotherapy,Fudan University Shanghai Cancer Center,Shanghai 200032,China
Abstract:Radiomics is a new area of research, which converts imaging data into high-resolution quantitative imaging features by applying the automatic high-throughput imaging-feature-extraction algorithm. With the development of data science, more and more attention has been paid to the non-invasive and quantitative method in precision radiotherapy all over the world. This paper will briefly introduce the concept of radiomics and its application in precision radiotherapy.
[1] Lambin P,Rios-Velazquez E,Leijenaar R,et al. Radiomics:extracting more information from medical images using advanced feature analysis[J].Eur J Cancer,2012,48(4):441-446.DOI:10.1016/j.ejca.2011.11.036. [2] 苏会芳,周国锋,谢传淼,等.放射组学的兴起和研究进展[J].中华医学杂志,2015,95(7):553-556.DOI:10.3760/cma.j.issn.0376-2491.2015.07.021. Su HF,Zhou GF,Xie CHM,et al. The rise and development of the radiation group[J].Chin J Med,2015,95(7):553-556.DOI:10.3760/cma.j.issn.0376-2491.2015.07.021. [3] Guinney J,Dienstmann R,Wang X,et al. The consensus molecular subtypes of colorectal cancer[J].Nat Med,2015,21(11):1350-1356.DOI:10.1038/nm.3967. [4] Sadanandam A,Lyssiotis CA,Homicsko K,et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy[J].Nat Med,2013,19(5):619-625.DOI:10.1038/nm.3175. [5] Coroller TP,Grossmann P,Hou Y,et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma[J].Radiother Oncol,2015,114(3):345-350.DOI:10.1016/j.radonc.2015.02.015. [6] Parmar C,Velazquez ER,Leijenaar R,et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation[J].PLoS One,2014,9(7):e102107.DOI:10.1371/journal.pone.0102107. [7] Aerts HJ,Velazquez ER,Leijenaar RTH,et al. Corrigendum:decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J].Nat Commun,2014,5:4006.DOI:10.1038/ncomms5006. [8] Paulino AC,Koshy M,Howell R,et al. Comparison of CT-and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer[J].Int J Rad Oncol Biol Phys,2005,61(5):1385-1392.DOI:10.1016/j.ijrobp.2004.08.037. [9] Yang DL,Rao G,Martinez J,et al. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma[J].Med Phys,2015,42(11):6725-6735.DOI:10.1118/1.4934373. [10] O'Sullivan F,Roy S,O'Sullivan J,et al. Incorporation of tumor shape into an assessment of spatial heterogeneity for human sarcomas imaged with FDG-PET[J].Biostatistics,2005,6(2):293-301.DOI:10.1093/biostatistics/kxi010. [11] Lee J,Nishikawa RM,Reiser I,et al. Local curvature analysis for classifying breast tumors:preliminary analysis in dedicated breast CT[J].Med Phys,2015,42(9):5479-5489.DOI:10.1118/1.4928479. [12] Ng F,Ganeshan B,Kozarski R,et al. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis:contrast-enhanced CT texture as a biomarker of 5-year survival[J].Radiology,2013,266(1):177-184.DOI:10.1148/radiol.12120254. [13] Virmani J,Kumar V,Kalra N,et al. SVM-based characterisation of liver cirrhosis by singular value decomposition of GLCM matrix[J].Int J Artif Intell Soft Comp,2013,3(3):276-296. [14] Karahaliou A,Skiadopoulos S,Boniatis I,et al. Texture analysis of tissue surrounding microcalcifications on mammograms for breast cancer diagnosis[J].Br J Radiol,2014,80(956):648-656.DOI:10.1259/bjr/30415751. [15] Knogler T,El-Rabadi K,Weber M,et al. Three-dimensional texture analysis of contrast enhanced CT images for treatment response assessment in Hodgkin lymphoma:comparison with F-18-FDG PET[J].Med Phys,2015,41(12):121904.DOI:10.1118/1.4900821. [16] Cunliffe AR,Armato Ⅲ SG,Straus C,et al. Lung texture in serial thoracic CT scans:correlation with radiologist-defined severity of acute changes following radiation therapy[J].Phys Med Biol,2014,59(18):5387-5398.DOI:10.1088/0031-9155/59/18/5387. [17] Grossbard BP,Loughin CA,Marino DJ,et al. Medical infrared imaging (thermography) of type I thoracolumbar disk disease in chondrodystrophic dogs[J].Vet Surg,2014,43(7):869-876.DOI:10.1111/j.1532-950X.2014.12239.x. [18] Stegmann C,Muench F,Rauber M,et al. Platinum nanowires with pronounced texture,controlled crystallite size and excellent growth homogeneity fabricated by optimized pulsed electrodeposition[J].RSC Adv,2014,4(10):4804-4810.DOI:10.1039/C3RA46204H. [19] Gholipour A,Afacan O,Aganj I,et al. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI[J]. Med Phys,2015,42(12):6919-6932. [20] Stewart S,Ivy MA,Anslyn EV.The use of principal component analysis and discriminant analysis in differential sensing routines[J].Chem Soc Rev,2014,43(1):70-84.DOI:10.1039/C3CS60183H. [21] Zhong H,Wang J,Shen L,et al. SU-E-J-256:predicting metastasis-free survival of rectal cancer patients treated with neoadjuvant chemo-radiotherapy by data-mining of CT texture features of primary lesions[J].Med Phys,2015,42(6):3325.DOI:10.1118/1.4924342. [22] Vanderploeg RD,Cooper DB,Belanger HG,et al. Screening for postdeployment conditions:development and cross-validation of an embedded validity scale in the neurobehavioral symptom inventory[J].J Head Trauma Rehabil,2014,29(1):1-10.DOI:10.1097/HTR.0b013e318281966e. [23] Anderberg MR.Cluster analysis for applications:probability and mathematical statistics:a series of monographs and textbooks[M].New York:Academic Press,2014. [24] Grichnik D,Brinckmann J,Singh L,et al. Beyond environmental scarcity:human and social capital as driving forces of bootstrapping activities[J].J Bus Venturing,2014,29(2):310-326.DOI:10.1016/j.jbusvent.2013.02.006. [25] Cunliffe AR,Al-Hallaq HA,Labby ZE,et al. Lung texture in serial thoracic CT scans:assessment of change introduced by image registrationa[J].Med Phys,2012,39(8):4679-4690.DOI:10.1118/1.4730505. [26] Cunliffe A,Armato Ⅲ SG,Castillo R,et al. Lung texture in serial thoracic computed tomography scans:correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development[J].Int J Radiat Oncol Biol Phys,2015,91(5):1048-1056.DOI:10.1016/j.ijrobp.2014.11.030. [27] Gutman DA,Dunn WD Jr,Grossmann P,et al. Somatic mutations associated with MRI-derived volumetric features in glioblastoma[J].Neuroradiology,2015,57(12):1227-1237.DOI:10.1007/s00234-015-1576-7. [28] van Stiphout RG,Valentini V,Buijsen J,et al. Nomogram predicting response after chemoradiotherapy in rectal cancer using sequential PETCT imaging:a multicentric prospective study with external validation[J].Radiother Oncol,2014,113(2):215-222.DOI:10.1016/j.radonc.2014.11.002. [29] Mackin D,Fave X,Zhang L,et al. Measuring computed tomography scanner variability of radiomics features[J].Invest Radiol,2015,50(11):757-765.DOI:10.1097/RLI.0000000000000180. [30] Fave X,Mackin D,Yang J Z,et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer?[J].Med Phys,2015,42(12):6784-6797.DOI:10.1118/1.4934826. [31] Hunter LA,Krafft S,Stingo F,et al. High quality machine-robust image features:identification in nonsmall cell lung cancer computed tomography images[J].Med Phys,2013,40(12):121916.DOI:10.1118/1.4829514. [32] Parmar C,Grossmann P,Bussink J,et al. Machine learning methods for quantitative radiomic biomarkers[J].Sci Rep,2015,5:13087.DOI:10.1038/srep13087. [33] Velazquez ER,Parmar C,Jermoumi M,et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer[J].Sci Rep,2013,3:3529.DOI:10.1038/srep03529. [34] Zhong H,Wang J,Hu W,et al. SU-D-BRA-04:fractal dimension analysis of edge-detected rectal cancer CTs for outcome prediction[J].Med Phys,2015,42(6):3213.DOI:10.1118/1.4923884. [35] Zhong H,Wang J,Hu W,et al. Edge detection and fractal dimension analysis of CT images to predict outcome of rectal cancer with neoadjuvant chemoradiation[J].Int J Rad Oncol Biol Phys,93(3):S182.DOI:10.1016/j.ijrobp.2015.07.435.