情报科学 ›› 2025, Vol. 43 ›› Issue (2): 114-120.

• 业务研究 • 上一篇    下一篇

网络舆情热点话题超网络建模及态势预测

  

  • 出版日期:2025-02-05 发布日期:2025-12-12

  • Online:2025-02-05 Published:2025-12-12

摘要: 【目的/意义】网络舆情安全是社会安全的重要组成部分,微博作为一类特殊的社交群体,除了蕴含大量的 短文本信息外,还有多种非文本信息交织在一起,这些信息能够反映网络舆情热点话题形成及演化过程。如何从 多源异构的文本中对热点话题进行识别,并对舆情事件的发展态势进行预测,已经成为当前舆情研究的重点。【方 法/过程】利用超网络理论对突发网络舆情事件进行建模,通过构建主体子网、客体子网、信息子网、时序子网和情 感子网的超网络模型,应用社会网络分析以及深度学习等算法对网络舆情的观点权重进行测算,对网络舆情的关 键节点进行识别。【结果/结论】研究结果表明,不同子网对网络舆情的演化和发展会产生重要的影响,社会网络分 析算法能够准确测算网络舆情的关键节点。【创新/局限】应用超网络理论构建不同子网对网络舆情的热点话题进 行分析,预测网络舆情演化态势,后续有必要扩大研究样本,使得研究结果具有更好地通用性。

Abstract: 【Purpose/significance】Network public opinion security is an important component of social security. Weibo, as a special social group, not only contains a large amount of short text information, but also various non textual information interwoven together, re⁃ flecting the formation and evolution process of hot topics in network public opinion. How to identify hot topics from multi-source het⁃ erogeneous texts and predict the development trend of public opinion events has become a focus of current public opinion research. 【Method/process】Using hypernetwork theory to model sudden network public opinion events, constructing hypernetwork models of subject subnets, object subnets, information subnets, temporal subnets, and emotional subnets, applying social network analysis, deep learning, and Pagerank algorithm to calculate the viewpoint weight of network public opinion, and identify key nodes of network public opinion【. Result/conclusion】The research results indicate that different subnets have a significant impact on the evolution and devel⁃ opment of network public opinion, and social network analysis algorithms can accurately measure the key nodes of network public opinion.【Innovation/limitation】Applying the theory of hypernetworks to construct different subnets for analyzing hot topics in network public opinion, predicting the evolution trend of network public opinion, and expanding the research sample in the future is necessary to make the research results more universal.