情报科学 ›› 2025, Vol. 43 ›› Issue (9): 1-11.

• 专论 •    下一篇

生成式人工智能高校用户初始使用行为影响因素 及其作用机理研究

  

  • 出版日期:2025-09-05 发布日期:2025-12-12

  • Online:2025-09-05 Published:2025-12-12

摘要: 【目的/意义】生成式人工智能(GAI)在学术界已经得到了广泛应用,分析GAI高校用户初始使用行为的影 响因素,对于GAI平台管理者优化用户体验、激励用户使用具有重要意义。【方法/过程】文章通过对20名具有代表 性的高校用户进行半结构化访谈获取一手资料,采用程序化扎根理论对访谈资料进行了深入分析,提炼出15个独 立范畴和 5个主范畴,并以此构建了 GAI高校用户初始使用行为影响因素模型。【结果/结论】研究表明:感知风险 性、感知拟人度等感知因素能直接影响 GAI 高校用户的初始使用行为,技术环境、交互设计等平台因素和主观规 范、网络环境等情境因素能通过感知因素的中介作用间接影响GAI高校用户的初始使用行为,性格特质、经历背景 等个体因素和数字素养、使用习惯等能力因素会调节平台因素和情境因素对初始使用行为的影响。最后,基于此 提出了若干 GAI的优化策略。【创新/局限】文章在理论层面深入分析了 GAI高校用户初始使用行为的影响因素及 作用机理,在实践层面提出了详细的GAI优化策略。下一步将从优化研究方法和提升样本多样性等方面做进一步 完善。

Abstract: 【Purpose/significance】Generative Artificial Intelligence (GAI) is widely used in academia, and analyzing the factors influ⁃ encing the initial usage behavior (IUB) of GAI university users is of great significance for GAI platform managers to optimize user expe⁃ rience and motivate user usage.【Method/process】The article obtains first-hand information through semi-structured interviews with 20 representative university users. It adopts programmed grounded theory to analyze the interview data in depth, extract 15 indepen⁃ dent categories and five main categories, and use them to construct a model of the factors influencing the IUB of GAI users in colleges and universities.【Result/conclusion】The study shows that: Perceptual factors, including perceived risk and perceived anthropomor⁃ phism, can directly influence the IUB of GAI university users. In addition, platform factors, such as the technical environment and in⁃ teraction design, and contextual factors, such as subjective norms and network environment, can indirectly affect the IUB of GAI uni⁃ versity users through. The mediation of perceptual factors and individual factors, such as personality traits and experiential back⁃ ground, and competence factors, such as digital literacy and usage habits, can modulate the influence of platform and contextual fac⁃ tors on IUB. Finally, based on the above findings, several optimization strategies for GAI are proposed.【Innovation/limitation】The ar⁃ ticle provides an in-depth analysis of the influencing factors and role mechanisms of the IUB of GAI college users at the theoretical level. It proposes detailed strategies for GAI optimization at the practical level. The next step will be to make further improvements in optimizing the research methodology and increasing the diversity of the samples.