情报科学 ›› 2024, Vol. 42 ›› Issue (12): 149-158.

• 业务研究 • 上一篇    下一篇

基于语义感知孪生网络模型的裁判文书论辩关系抽取研究

  

  • 出版日期:2024-12-05 发布日期:2025-06-27

  • Online:2024-12-05 Published:2025-06-27

摘要: 【目的/意义】为实现裁判文书论辩关系的自动抽取,以帮助理解案件的法律推理和裁判过程,进而推动法 律领域文本分析的研究与发展。【方法/过程】本文根据所构建的裁判文书论辩关系语料库,提出了一种双向注意力 驱动的语义感知孪生神经网络模型(BAD-SPS),将论辩关系抽取任务建模成文本匹配任务。模型利用BERT分别 对输入的论辩元素对进行编码,再经过白化操作去除特征间的相关性并简化特征表示,然后引入双向注意力机制 进一步加强论辩元素间的语义交互,从而提升模型对论辩元素结构的理解能力。最后将模型同时处理裁判文书中 论辩关系抽取的两大子任务:论辩关系检测和论辩关系分类。【结果/结论】BAD-SPS模型相较于基准模型,在论辩 关系检测数据集2上的F1值提升显著,达到11.02。同样,在论辩关系分类数据集D上,其F1值也实现了10.59的显 著提升。实验结果表明该模型在准确理解和识别论辩关系方面的有效性。【创新/局限】本研究针对裁判文书中的 论辩关系探索了基于语义感知孪生网络模型的裁判文书论辩关系抽取模型,能够实现裁判文书中论辩关系的自动 化抽取,后续有待在更多民事案由上进行泛化实验。

Abstract: 【Purpose/significance】In order to automatically extract argumentative relations in judgment documents and assist in under⁃ standing the legal reasoning and judgment process of cases, this is done to further promote research and development in the field of le⁃ gal text analysis.【Method/process】This paper proposes a Bidirectional Attention-Driven Semantic Perception Siamese Neural Net⁃ work Model (BAD-SPS) based on the constructed corpus of judgment documents for argumentative relationships. It models the argu⁃ mentative relationships extraction task as a text matching task. The model uses BERT to encode the input argumentation elements separately, then employs whitening operations to remove the correlation between features and simplify feature representations. Next, a bidirectional attention mechanism is introduced to further enhance the semantic interaction between argumentation elements, thereby improving the model's understanding of the structure of argumentation elements. Finally, the model simultaneously handles the two sub-tasks of argumentative relationships extraction in judicial documents: argumentation relation detection and argumentation relation classification.【Result/conclusion】The BAD-SPS model shows a significant improvement in F1 score compared to the baseline model on argumentative relation detection dataset 2, achieving a score of 11.02. Similarly, on the argumentative relation classification dataset D, it also achieves a significant improvement with an F1 score of 10.59. Experimental results demonstrate the model's effectiveness in accurately understanding and identifying argumentative relations.【Innovation/limitation】This study explores a semantic-aware Sia⁃ mese network model for argumentative relation extraction in judgment documents. It can automatically extract argumentative relations in judicial documents, and further experiments are needed to generalize it to more civil cases.