情报科学 ›› 2019, Vol. 37 ›› Issue (10): 126-132.

• 论文 • 上一篇    下一篇

基于眼动追踪的文档内信息搜寻用户深、 浅阅读行为自动识别研究

  

  • 出版日期:2019-09-01

  • Online:2019-09-01

摘要: 【目的/意义】用户在进行文档内信息搜寻时,根据自身需求和阅读深入程度的不同,呈现出两种不同的阅 读行为——深阅读与浅阅读。自动识别用户的深浅阅读有利于改善当前对深、浅阅读区分存在主观性强、耗时耗 力的问题,对于研究文档内信息搜寻用户的个性化认知机制,优化用户信息搜寻体验也提供了很好的帮助。【方法/ 过程】本文根据前人对深、浅阅读的研究,利用K-means聚类算法构建文档内信息搜寻用户深、浅阅读行为的自动 识别模型,并用实验验证模型分类的准确度。【结果/结论】实验结果显示,深、浅阅读在注视点持续时长、眼跳距离、 眼跳方向和相邻注视点中心纵坐标距离这四个特征上有很大的差异,同时经过专家验证,K-means聚类模型识别 深、浅阅读总准确率片段数为84.95%,片段时长为94.32%,达到了自动、准确识别文档内信息搜寻用户的深、浅阅读 行为的效果。 关键词:深阅读;